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Unit I 

Selections and binomial coefficients- Permutations-Ordered selections-

unordered selections-Miscellaneous problems 

Chapter 1: Sections 1.1 to 1.4 

 

1. Selections and binomial coefficients: 

1.1. Permutations: 

This chapter will investigate the problem of finding how many ways there are of 

selecting 𝑘 objects from a set of 𝑛 objects. There are essentially four different 

problems here, depending on whether or not selections are ordered, and also on 

whether or not repetitions are allowed (i.e. whether or not an object can be 

selected more than once). 

To start with, consider the problem of listing in order all the elements of a set of 

size 𝑛. If 𝑝(𝑛) denotes the number of such listings, then 

𝑝(1) = 1, 𝑝(2) = 2, 𝑝(3) = 6. 

To see that 𝑝(3) = 6, let the objects be 𝑎, 𝑏, 𝑐. Then the 6 possible listings are 

𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑏𝑎𝑐, 𝑏𝑐𝑎, 𝑐𝑎𝑏, 𝑐𝑏𝑎 

Any such ordering is called a permutation of 𝑎, 𝑏, 𝑐. 

The general formula for 𝑝(𝑛) is now obtained. Choose one of the 𝑛 objects to 

be placed first in the list. This can be done in 𝑛 ways, and each of these 𝑛 

choices results in ( 𝑛 − 1 ) objects being left. These ( 𝑛 − 1 ) objects can be 

placed in the ( 𝑛 − 1 ) remaining places in 𝑝(𝑛 − 1) different orders, so that the 

recurrence relation 

𝑝(𝑛) = 𝑛𝑝(𝑛 − 1) 

is obtained. This, with the boundary condition 𝑝(1) = 1 gives, by Example 1.1, 

𝑝(𝑛) = 𝑛!. (1.1) 
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Example 1.1:  

A breakfast cereal competition lists 10 properties of a new make of car and asks 

the eater to place these properties in order of importance. (a) How many orderings 

are possible? (b) How many would be possible if the first and tenth places were 

already specified? 

Solution: 

 (a) 10 !;  

(b) 8 properties are left to be ordered. This can be done in 8 ! ways. 

Example 1.2: 

A sports magazine decides to publish articles on all 22 first division (football) 

league clubs, one club per week for 22 weeks. In how many ways can this be 

done if the first article must be about Arsenal? How many if Wolves and Stoke 

must be featured on consecutive weeks? 

Solution:  

(a) 21 teams are left to be ordered, so there are 21 ! orderings. 

(b) Consider Stoke-Wolves as one unit. Then this unit and 20 others have to be 

ordered. This can be done in 21 ! ways. But in each way there are two possible 

orderings of the Stoke-Wolves unit, so the required number is 2 × 21 ! 

Exercises 1: 

1. How many 9 -digit numbers can be obtained by using each of the digits 

1,2,… ,9 exactly once? How many of these are bigger than 500000000 ? 

2. How many permutations are there of the 26 letters of the alphabet in which 

the 5 vowels are in consecutive places? 

3. How many ways are there of listing the 26 letters of the alphabet 

(a) so that the five vowels appear consecutively, (b) so that A and B do not 

occur next to each other? 
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4. It is required to seat 𝑛 people round a table. Show that this can be done in 

(𝑛 − 1) ! different ways. (Hint: put the 𝑛 people in a row and then join up 

the ends of the row. Some rows will give the same circular arrangement.) 

5. How many different necklaces can be designed from 𝑛 colours, using one 

bead of each colour? 

1.2. Ordered selections: 

The competition of Example 1.1 will now be slightly changed. Suppose the eater 

is now asked to choose only the 6 most important properties and to place these 6 

in order of importance. How many possible lists are there now? 

In general, let 𝑝(𝑛, 𝑟) denote the number of ways of listing 𝑟 objects chosen from 

𝑛. As for permutations above, the first object on the list can be chosen in 𝑛 ways, 

and then ( 𝑟 − 1 ) of the remaining ( 𝑛 − 1 ) objects have to be added to the list. 

Thus 

𝑝(𝑛, 𝑟) = 𝑛𝑝(𝑛 − 1, 𝑟 − 1). 

This gives 

𝑝(𝑛, 𝑟) = 𝑛(𝑛 − 1)… (𝑛 − 𝑟 + 2)𝑝(𝑛 − 𝑟 + 1,1) 

where there is the boundary condition 𝑝(𝑠, 1) = 𝑠 for all 𝑠. Thus 

𝑝(𝑛, 𝑟)  = 𝑛(𝑛 − 1)… (𝑛 − 𝑟 + 2)(𝑛 − 𝑟 + 1)

 =
𝑛!

(𝑛 − 𝑟)!
(2.2)

 

In the above example, therefore, the number of possible lists is 
10!

4!
. 

Example 1.3: 

There are 5 seats in a row available, but 12 people to choose from. How many 

different seatings are possible? 

Solution: 
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 𝑝(12,5) =
12!

7!
. 

Example 1.4: 

30 girls, including Miss U.K., enter a Miss World competition. The first 6 places 

are announced. 

(a) How many different announcements are possible? 

(b) How many if Miss U.K. is assured of a place in the first six? 

Solution: 

(a) 𝑝(30,6) =
30!

24!
; 

(b) Here subtract from 𝑝(30,6) the number of placings which do not include 

Miss U.K. Such placings are in effect ordered selections of 6 from 29 

candidates, so there are 𝑝(29,6) such orderings. The required number is 

therefore 

30!

24!
−

29!

23!
=

29!

24!
(30 − 24) =

6.29!

24!
. 

In the above examples, once an object has been chosen it cannot be chosen 

again. However, sometimes repetitions are allowed. 

Example 1.5: 

For each day of the 5-day working week I can choose any one of 4 newspapers 

to read in the train. How many different buys are possible in a week? 

Solution: 

The point here is that if I buy the Times on Monday, I can still buy the Times 

later on in the week. For each day there are 4 choices, so the total number of 

choices for the week is 

4 × 4 × 4 × 4 × 4 = 45 = 1024 
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Clearly the number of ways of choosing 𝑘 objects in order from a set of 𝑛 

objects, with repetitions allowed, is just 𝑛𝑘, since there are 𝑛 objects to choose 

from each time. 

Exercises 2: 

1. Evaluate 𝑝(7,4), 𝑝(8,2), 𝑝(9,5). 

2. A car registration number is to consist of 3 letters followed by a number 

between 1 and 999 . How many car numbers are possible? 

3. Tom has 75 books but enough room on his bookshelf for only 20 . In how 

many ways can he fill his shelf? 

4. How many numbers between 1000 and 3000 can be formed from the 

digits 1,2,3,4,5 if repetition of digits is (a) allowed, (b) not allowed? 

5. In twelve-tone music, the twelve notes of the chromatic scale are put in a 

row, and have to be played in that particular order. How many rows are 

possible? 

6. A 12-person committee has to appoint from its own members a chairman, 

secretary and treasurer. In how many ways can this be done? 

7. In how many ways can a 5-letter word be formed from an alphabet of 26 

letters if repetitions are (a) allowed, (b) not allowed? 

8. A binary sequence of length 𝑛 is a string of 𝑛 digits each of which is 0 or 

1 . How many such sequences are there? List all those of length 4. 

1.3. Unordered selections: 

Often in making a selection, the selected objects are not placed in any particular 

order. For example, if 5 out of 8 books are to be chosen, the only interest is in 

which 5 are chosen, not in the order in which they are chosen. How many ways 

are there of choosing 5 books from 8?  



 

8 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  
 

 

More generally, let 𝑐(𝑛, 𝑟) denote the number of ways of choosing 𝑟 objects from 

𝑛 given objects, without taking order into account. Consider any selection of 𝑟 

objects. This selection can be ordered in 𝑝(𝑟) = 𝑟! different ways, and so each 

unordered selection gives rise to 𝑟! ordered selections. Thus 

𝑟! 𝑐(𝑛, 𝑟) =  total number of ordered selections 

 =
𝑛!

(𝑛 − 𝑟)!

 

so that 

𝑐(𝑛, 𝑟) =
𝑛!

𝑟! (𝑛 − 𝑟)!
(1.3) 

This number is often written as (𝑛
𝑟
). Thus 

(
𝑛

𝑟
) =

𝑛!

𝑟! (𝑛 − 𝑟)!
 

For example, 

𝑐(8,5) = (
8

5
) =

8!

5! 3!
=

8 ⋅ 7 ⋅ 6

3 ⋅ 2 ⋅ 1
= 56. 

There are therefore 56 ways of choosing 5 books from 8 . 

Example 1.6: 

The third method of attacking the problem gave 

𝑓(𝑛, 𝑘) = 𝑐(𝑛 + 𝑘 − 1, 𝑛 − 1) 

Thus 

𝑓(𝑛, 𝑘) = (
𝑛 + 𝑘 − 1

𝑛 − 1
) =

(𝑛 + 𝑘 − 1)!

(𝑛 − 1)! (𝑛 + 𝑘 − 1 − 𝑛 + 1)!
=

(𝑛 + 𝑘 − 1)!

(𝑛 − 1)! 𝑘!
 

agreeing with method 2. 

One of the important properties of the numbers (𝑛
𝑟
) is given in the following 

theorem. The convention that (𝑛
0
) = 1 is followed. 
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Theorem 1.1: 

 (𝑛
𝑟
) = ( 𝑛

𝑛−𝑟
). (0 ⩽ 𝑟 ⩽ 𝑛). 

Proof: 

Two alternative proofs are given, both of which should be studied. 

First proof 

Selecting 𝑟 objects from 𝑛 is equivalent to choosing the ( 𝑛 − 𝑟 ) objects which 

shall not be selected! 

Second proof 

(
𝑛

𝑟
) =

𝑛!

𝑟! (𝑛 − 𝑟)!
=

𝑛!

(𝑛 − (𝑛 − 𝑟))! (𝑛 − 𝑟)!
= (

𝑛

𝑛 − 𝑟
). 

Example 1.7: 

 (1) (8
3
) = (8

5
). (2) ( 𝑛

𝑛−1
) = (𝑛

1
) = 𝑛  and ( 𝑛

𝑛−2
) = (𝑛

2
) =

1

2
𝑛(𝑛 − 1) for all 𝑛. 

The numbers (𝑛
𝑟
) are of extreme importance in mathematics. This is because of 

the following theorem. 

Theorem 1.2: 

 Let 𝑛 be a positive integer. Then, if (1 + 𝑥)𝑛 is expanded as a sum of powers 

of 𝑥, the coefficient of 𝑥𝑟 is (𝑛
𝑟
). 

Example 2.8. 

 (1 + 𝑥)0 = 1

 (1 + 𝑥)1 = 1 + 𝑥

 (1 + 𝑥)2 = 1 + 2𝑥 + 𝑥2

 (1 + 𝑥)3 = 1 + 3𝑥 + 3𝑥2 + 𝑥3

 (1 + 𝑥)4 = 1 + 4𝑥 + 6𝑥2 + 4𝑥3 + 𝑥4

 (1 + 𝑥)5 = 1 + 5𝑥 + 10𝑥2 + 10𝑥3 + 5𝑥4 + 𝑥5

 

Proof of Theorem 1.2. Consider the product 

(1 + 𝑥)(1 + 𝑥)… (1 + 𝑥) (𝑛 brackets ). 
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A term 𝑥𝑟 is obtained by choosing 𝑟 of the brackets, selecting the term 𝑥 from 

each of them, and selecting the term 1 from the remaining ( 𝑛 − 𝑟 ) brackets. 

Thus, the number of times 𝑥𝑟 is obtained is just the number of ways of choosing 

𝑟 of the 𝑛 brackets, i.e. 𝑐(𝑛, 𝑟). 

The coefficients in the expansions are, by Example 1.8, 

1
11
121
1331
14641

15101051
⋮

 

This array is known as Pascal's triangle. The ( 𝑛 + 1 ) th row gives the numbers 

(𝑛
0
), (𝑛

1
), … , (𝑛

𝑛
). The property of Theorem 1.1 is simply that each row reads the 

same forwards as backwards. But another property is clear in the triangle: each 

number in the array is the sum of the two numbers immediately above it. This is 

because of the following recurrence relation, for which again two proofs are 

given. 

Theorem 1.3: 

 (𝑛
𝑟
) = (𝑛−1

𝑟−1
) + (𝑛−1

𝑟
). 

First proof. (𝑛
𝑟
) is the number of ways of choosing 𝑟 objects from 𝑛. Any 

particular choice may or may not include the 𝑛th object. If the 𝑛th 

object is included, the problem is that of choosing (𝑟 − 1) from the remaining 

(𝑛 − 1), and this can be done in (𝑛−1
𝑟−1

) ways. If the 𝑛th object is not chosen, 𝑟 

objects have to be selected from the remaining (𝑛 − 1), and this can be done in 

(𝑛−1
𝑟

) ways. 

Second proof. (𝑛−1
𝑟−1

) + (𝑛−1
𝑟

) =
(𝑛−1)!

(𝑟−1)!(𝑛−𝑟)!
+

(𝑛−1)!

𝑟!(𝑛−𝑟−1)!
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=
(𝑛 − 1)!

𝑟! (𝑛 − 𝑟)!
{𝑟 + (𝑛 − 𝑟)} =

𝑛!

𝑟! (𝑛 − 𝑟)!
= (

𝑛

𝑟
). 

Example 1.9: 

 (7
4
) = (6

3
) + (6

4
). 

Theorem 1.2 can be re-expressed in the following form. 

Theorem 1.2: If 𝑛 is any positive integer, then 

(1 + 𝑥)𝑛 = (
𝑛

0
) + (

𝑛

1
) 𝑥 + (

𝑛

2
) 𝑥2 + ⋯ + (

𝑛

𝑛
) 𝑥𝑛 = ∑  

𝑛

𝑟=0

(
𝑛

𝑟
) 𝑥𝑟 

More generally, the following results holds. 

Theorem 1.4. If 𝑛 is any positive integer, then 

(𝑎 + 𝑏)𝑛 = (
𝑛

0
) 𝑎𝑛 + (

𝑛

1
) 𝑎𝑛−1𝑏 + (

𝑛

2
) 𝑎𝑛−2𝑏2 + ⋯+ (

𝑛

𝑛
) 𝑏𝑛

 = ∑  

𝑛

𝑟=0

  (
𝑛

𝑟
) 𝑎𝑛−r𝑏𝑟

 

Proof: 

(𝑎 + 𝑏)𝑛 = 𝑎𝑛 (1 +
𝑏

𝑎
)
𝑛

= 𝑎𝑛 ∑  𝑛
𝑟=0 (𝑛

𝑟
)(𝑏

𝑎
)
𝑟

= ∑  𝑛
𝑟=0 (𝑛

𝑟
)𝑏𝑟𝑎𝑛−𝑟. 

Theorem 1.4 is known as the binomial theorem, and the numbers (𝑛
𝑟
) are called 

the binomial coefficients. The name 'binomial' refers to the fact 

that the theorem is concerned with the expansion of the 𝑛th power of a sum of 

two symbols. As an example of the theorem, 

(𝑥 + 𝑦)7 = 𝑥7 + 7𝑥6𝑦 + 21𝑥5𝑦2 + 35𝑥4𝑦3 + 35𝑥3𝑦4 + 21𝑥2𝑦5 + 7𝑥𝑦6 +

𝑦7. 

In the language of Chapter 1, (1 + 𝑥)𝑛 is the generating function of the 

binomial coefficients. One useful special case is the following. 
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Theorem 1.5: 

 If 𝑛 is any positive integer, then 

(1 − 𝑥)𝑛 = 1 − (𝑛
1
)𝑥 + (𝑛

2
)𝑥2 − ⋯ + (−1)𝑛(𝑛

𝑛
)𝑥𝑛 = ∑  𝑛

𝑟=0 (𝑛
𝑟
)(−1)𝑟𝑥𝑟. 

This follows from the binomial theorem on choosing 𝑎 = 1, 𝑏 = −𝑥. 

Example 1.10.  

Later on in this book, it will be necessary to consider the following series: 

exp (𝑥) = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ 

Using the binomial theorem, it is easy to prove the following important 

property: 

exp (𝑥)exp (𝑦) = exp (𝑥 + 𝑦). 

For the left-hand side is 

(1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ )(1 + 𝑦 +

𝑦2

2!
+

𝑦3

3!
+ ⋯ ), 

so that, when the brackets are multiplied together, the terms of the form 𝑥𝑟𝑦𝑠 

with 𝑟 + 𝑠 = 𝑛 which are obtained are precisely 

𝑥𝑛

𝑛!
+

𝑥𝑛−1

(𝑛 − 1)!

𝑦

1!
+

𝑥𝑛−2

(𝑛 − 2)!

𝑦2

2!
+ ⋯+

𝑥

1!

𝑦𝑛−1

(𝑛 − 1)!
+

𝑦𝑛

𝑛!

 =
1

𝑛!
{𝑥𝑛 +

𝑛!

(𝑛 − 1)! 1!
𝑥𝑛−1𝑦 +

𝑛!

(𝑛 − 2)! 2!
𝑥𝑛−2𝑦2 + ⋯+ 𝑦𝑛)

 =
1

𝑛!
(𝑥 + 𝑦)𝑛

 

Already in this book the need for an expansion for (1 − 𝑥)−𝑛 has been met. Such 

an expansion is impossible if it is required that there should be only a finite 

number of terms, as happens in the expansion of (1 − 𝑥)𝑛, 

but an infinite series representing (1 − 𝑥)−𝑛 can be obtained. In fact, since the 

problem which gave rise to (1 − 𝑥)−𝑛 has already been solved by another method 

(method 3), we can turn this to our advantage and use it to prove: 
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Theorem 1.6: 

If 𝑛 is any positive integer, then 

(1 − 𝑥)−𝑛 = 1 + (
𝑛

1
) 𝑥 + (

𝑛 + 1

2
) 𝑥2 + (

𝑛 + 2

3
) 𝑥3 + ⋯

 = ∑  

∞

𝑟=0

 (
𝑛 + 𝑟 − 1

𝑟
) 𝑥𝑟 .

 

Proof. The theorem simply states that 𝑓(𝑛, 𝑟) = (𝑛+𝑟−1
𝑟

). But this has been 

proved by method 3 (see Example 2.6). 

Example 1.11: 

 (1 − 𝑥)−4 = 1 + 4𝑥 + 10𝑥2 + 20𝑥3 + ⋯ 

Example 1.12: 

 Use Pascal's triangle and the fact that 

𝑓(𝑛, 𝑟) = (
𝑛 + 𝑟 − 1

𝑟
) 

to extend the following table of values of 𝑓(𝑛, 𝑟). 

𝑟𝑛 1 2 3 4 5 6 

1 1 2 3 4   

2 1 3 6 10   

3 1 4 10 20   

4       

 

In concluding this section, note that the first three entries in the following table 

have been explicitly presented in this chapter. What about the fourth? The number 

of unordered selections of 𝑘 objects (with repititions allowed) from 𝑛 objects is 
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the number of ways of choosing 𝑥1, … , 𝑥𝑛 (where 𝑥i is the number of times the 𝑖 

th object is chosen) such that 𝑥1 + ⋯ + 𝑥𝑛 = 𝑘, i.e. is just 𝑓(𝑛, 𝑘) = (𝑛+𝑘−1
𝑘

). 

Choose 𝑘 from 𝑛 
Number of ordered 

selections 

Number of unordered 

selections 

Repetitions not 

allowed 

𝑛!

(𝑛 − 𝑘)!
 (

𝑛

𝑘
) 

Repetitions allowed 𝑛𝑘 (𝑛+𝑘−1
𝑘

). 

 

Exercises 3: 

1. Expand (1 + 𝑥)8 and (1 − 𝑥)8. 

2. Evaluate (11
4
), (13

7
), (15

8
). 

3. Obtain the first few terms in the expansion of (1 − 𝑥)−8. 

4. How many solutions are there of the equation 𝑥 + 𝑦 + 𝑧 = 10 with 𝑥, 𝑦, 𝑧 

non-negative integers? 

5. How many solutions are there of the equation 𝑥 + 𝑦 + 𝑧 = 10 with 𝑥, 𝑦, 𝑧 

positive integers? 

6. An eight-man committee is to be formed from a group of 10 Welshmen 

and 15 Englishmen. In how many ways can the committee be chosen if 

(a) the committee must contain 4 of each nationality, 

(b) there must be more Welshmen than Englishmen, 

(c) there must be at least two Welshmen? 

7. A king is placed on the bottom left hand square of an 8 × 8 chessboard 

and is to move to the top right-hand corner square. If it can move only up 

or to the right, how many possible paths does it have to choose from? 

8. By using the identity 
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(1 + 𝑥)2𝑛 = (1 + 𝑥)𝑛(1 + 𝑥)𝑛 

and considering the coefficient of 𝑥𝑛 on both sides, prove that 

(
2𝑛

𝑛
) = (

𝑛

0
)
2

+ (
𝑛

1
)
2

+ (
𝑛

2
)
2

+ ⋯+ (
𝑛

𝑛
)
2

. 

Verify this in the case 𝑛 = 5. 
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Unit II 

Parings problems: Pairings with in a set-Pairing between sets  

Chapter 2: Sections 2.1 and 2.2 

 

2.1. Pairings within a set  

Pairings problems fall, roughly speaking, into two categories. The first type is 

concerned with splitting up a set with an even number of elements into pairs of 

elements, for example arranging 2n students in n pairs to share rooms in a college 

residence hall. The second type is concerned with pairing off the elements of one 

set with those of another, for example assigning jobs to applicants so that no two 

applicants get the same job. A problem of the first type will serve as the starting 

point of this chapter. Given 2n objects, how many ways are there of forming n 

pairs? 

Example 1: 

Six men A, B, C, D, E, F are to be paired off. One way is A with B, C with D, E 

with F, whereas another way is A with C, B with F, E with D. There are 15 possible 

ways altogether and the reader is left to produce the remaining 13. This method 

is rather lengthy, and so a better method is looked for.  

In general, when there are 2n objects, a first idea might be to place these objects 

in brackets (2 in each) strung in a row as shown.  

( , ) ( ,)……( , ) 

The objects can be placed in the spaces in (2n)! different ways. In each bracket, 

however, there are 2! different orderings, which have to be considered as giving 

the same pairing, so the number (2n)! must be divided by 2! for each bracket, i.e. 

by (2!)n. Further, the order of the brackets does not matter, and since the brackets 

can be arranged in n! different ways, each distinct pairing has in fact been 
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obtained n! times. On dividing by n! the total number of different pairings is 

finally  

(2n)! 

(2!)𝑛n! 
     ……….. (2.1) 

For example, n = 3 gives 
6! 

233! 
= 15 as already observed. This method oa clearly 

generalizes to the problem of splitting up mn objects into n sets of m objects, the 

working above simply corresponding to m = 2. 

Theorem 2.1: 

Let S be a set of mn objects. Then S can be split up (partitioned) into n sets of m 

elements in 
(mn)! 

(m!)𝑛n! 
 different ways.  

Proof: 

Replace 2 by m in the above argument.  

Example 2.2:  

A wholesale company has to supervise sales in 20 towns. Five members of staff 

are available, and each is to be assigned 4 towns to supervise. 

(a) In how many ways can the 20 towns be put into 5 groups of 4?  

(b) In how many ways can the towns be assigned to the staff? 

Solution: 

(a) The theorem gives the number as 
20! 

(4!)55! 
  

(b) Imagine that the towns have been arranged in 5 groups of 4 in some particular 

way. Then the 5 groups can be assigned to the 5 men in 5! different ways, 

depending on which group goes to the first man, which to the second, and so on. 

The required number is therefore 5! times the number in part (a), i.e. 
20! 

(4!)55! 
. 

Note on (a). This corresponds to omitting the last part of the argument which 

proved (2.1). Here the order of the brackets does matter, since the first bracket 

corresponds to the first man, and so on.  
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In practice, of course, things are generally far more complicated. In Example 2.1, 

for example, A may refuse to be paired with B. This gives a new problem. Instead 

of asking how many pairings are possible, the question becomes: does even one 

pairing exist, taking into account the likes and dislikes of the six people?  

Example 2.3.  

In Fig. 2.1, the 6 dots represent 6 people. Two dots are joined by a line if and only 

if the two people represented by the dots are willing to be paired together. Is it 

possible to achieve a pairing?  

 

Figure 2.1. 

Solution: 

No. For C can be paired only with E, and this leaves no-one to be paired with F. 

A diagram such as Fig. 2.1 is called a graph. The dots are known as the vertices 

and the lines as the edges. The convention will be followed in this book that any 

pair of vertices of a graph can be joined by at most one edge. Roughly speaking, 

the failure to find a pairing in the above example is due to the lack of edges. 

Vertex F has only one edge emanating from it, whereas it could have as many as 

five. The following theorem shows that if each vertex has at least half the possible 

edges from it present, then a pairing can be achieved. The proof is constructive in 

the sense that it not only proves there is a pairing but it describes how a pairing 

can be found in practice by a routine procedure. Such a procedure is called an 

algorithm, and can be programmed for a computer. Two definitions are given 
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before the proof. The degree of a vertex of a graph is the number of edges with 

that vertex as an end-point. For example, in Fig. 2.1, the respective degrees are 3, 

2, 1, 1, 4, 1. Also, a pairing off of all the vertices of a graph is often called a 

complete or perfect matching of the graph. Clearly a graph needs to have an even 

number of vertices if it is to have a perfect matching. 

Theorem 2.2:  

If a graph has 2n vertices, each of degree ≥n, then the graph has a perfect 

matching. 

Proof: 

Assuming that r pairs of vertices have so far been paired off, where r<n, the proof 

shows how to increase this to (r + 1) pairs. If there are two vertices not yet paired 

off but joined by an edge, they can be taken immediately as the (r + 1)th pair. So 

suppose now that no two of the remaining vertices are joined by an edge. Choose 

any two of them, and call them a and b. It will now be shown that there must be 

a pair u, v of vertices already paired together such that a and uw are joined by an 

edge and b and v are joined by an edge (see Fig. 2.2). The pairings can then be 

rearranged so that a is paired with u and b with v, thus increasing the number of 

pairs to (r + 1). 

 

Figure 2.2. 

Suppose no pair u, v exists. Then each of the r pairs x, y of vertices so far formed 

is such that at most two of the four possible edges ax, ay, bx, by actually appear 

in the graph. Thus, the total number of edges from the r pairs to a and b is at most 
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2r < 2n. But since a-and b are both of degree ≥n, the number must be ≥ 2n, giving 

a contradiction. The algorithm is therefore as follows. Having obtained r pairs, 

scan the remaining (2n — 2r) vertices to see if two of them are joined by an edge. 

If not, choose any two of them, a, b, and scan the pairs x, y already formed until 

one is found such that a is joined to x and b to y. Then replace the pair x, y by the 

two pairs a, x and b, y. If r + 1< n, repeat the whole process. 

Exercises 2.1: 

1. 10 people meet and form 5 pairs. In how many ways can these 5 pairs be 

formed?  

2. 16 teams qualify for a particular round of the F.A. Cup. How many possible 

pairings are there for the 8 games if it (a) is(b) is not taken into account 

which teams are drawn at home?  

3.  A pack of 52 cards is divided among 4 people so that each gets 13 cards 

(as in bridge). How many such deals are possible?  

4. In the Scottish League Cup, 16 first division clubs were arranged in 4 

groups of 4. In how many ways can this be done? Recently, Rangers and 

Celtic were drawn in the same section two years running. Show that this is 

not as strange as the press made it out to be by finding the number of ways 

the draw can be made with Rangers and Celtic in the same section, and 

verifying that this number is precisely one fifth of the total number of 

possible draws.  

5. The following are all the allowable pairings of 8 objects. (1, 2), (1, 3), (2, 

4), (2, 5), (4, 6), (5, 7), (5, 8), (7, 8). Obtain a complete matching. 

6. Draw a graph with 10 vertices, each of degree ≥ 5, and find a perfect 

matching for it.  

7. Construct a graph with 10 vertices, each of degree ≥ 4, with no perfect 

matching. 
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2.2. Pairings between sets  

A number of jobs are available in a large industrial organization, and applicants 

are examined for suitability for each of the jobs. In what circumstances is it 

possible to assign a suitable person to each? 

This problem, one type of assignment problem, is typical of those to be examined 

in this section. More generally, given two sets A, B (here, the set of jobs and the 

set of applicants), when is it possible to pair off each member of A with a different 

member of B?  

Example 2.4: 

Five jobs are available. For each z= 1, …..,5, let 𝑆𝑖 denote the set of applicants 

suited for the ith job. Can all the jobs be filled?  

𝑆1 = { (A, B, C}, 𝑆2 = {D, E}  𝑆3 ={D}  𝑆4 = {E},  𝑆5 = {A, E}.  

Solution:  

No. The second, third, and fourth jobs have only 2 suitable applicants between 

them. But 2 men cannot fill 3 jobs.  

This example deserves closer scrutiny. By introducing the sets 𝑆1,,..., 𝑆5, the 

problem has been re-expressed as one of the following type. 

Given sets 𝑆1,..., 𝑆𝑛 ,is it possible to choose a different element from each set 𝑆𝑖?  

If it is possible, then the chosen elements are called distinct representatives of the 

sets. In the above example, the sets 𝑆3, 𝑆4, 𝑆5 possess distinct representatives (D, 

E, and A, in that order), but the sets 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5 do not.  

The reason is:  

There are 3 sets containing between them less than 3 elements. Clearly, if distinct 

representatives do exist, then, for every value of k;  

any k sets contain between them at least k elements. ……… (2.2) 
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This is a necessary condition. The interesting and useful fact is that the condition 

is not only necessary but it is also sufficient. In other words, if (2.2) holds for 

every value of k, then it is guaranteed that distinct representatives can be found. 

The proof which will be given is an algorithm which not only shows that distinct 

representatives exist, but gives a method of actually finding them. The following 

result will then have been proved.  

Example 2.5: 

If A1 = {1,2}; A2 = {4}; A3 = {1,3}; A4 = {2,3,4}. Find the distinct representative 

for the set Ai. 

 

Example 2.6: 

Find the set for distinct representative for the set {a};{a,b,c};{c,d,e}; {b, 

d,e};{a,d,g};{f};{c,f} 
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Theorem 2.3:  

(Philip Hall’s theorem on distinct representatives). The sets 𝐴1,,..., 𝐴5, possess a 

system of distinct representatives if and only if, for all k =1,...,n, any k 𝐴𝑖𝑠 contain 

at least k elements in their union.  

An alternative formulation would be:  

Assignment Theorem: 

This assignment problem has a solution if and only if there is no value of k for 

which there are k jobs with fewer than k suitable applicants between them.  

Replacing the job situation by marriage gives yet another formulation of Hall’s 

theorem which has earned it the popular title of the Marriage Problem.  

Marriage Theorem: 

Given a set of men and a set of women, each man makes a list of the women he 

is willing to marry. Then each man can be married off to a woman on his list if 

and only if,  

(*) {for every value of k, any k lists contain in their union at least k names.  

Proof: 

It is shown how, on the assumption that r <n men have been paired off with 

suitable ladies, to increase this to (r + 1) men.  

Suppose r men have been paired off. If there is a man left who has on his list a 

woman who is still unattached, an (r + 1)th pairing is immediate.  

So, suppose that all women on remaining lists are already attached. 

 

Figure 2.3. 
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Choose any unmarried man 𝐴0 (see Fig. 2.3). By (*) with k = 1, there is a woman 

𝐵1 on his list. 𝐵1 is married to 𝐴1, say by (*) with k = 2, the combined lists of 

𝐴0 and 𝐴1 contain the name of at least one more woman 𝐵2. If 𝐵2 is unmarried, 

stop. If 𝐵2 is married to 𝐴2, then, by (*) with k = 3, the combined lists of 𝐴0, 𝐴1, 

𝐴2 contain a third name, say 𝐵3 . If 𝐵3 is unmarried, stop. If 𝐵3 is married to A3, 

repeat the process, and continue until an unmarried woman 𝐵𝑠 is reached. (This 

must happen eventually since not all the women are married, and no 𝐵𝑖 occurs 

twice in the process.  

Note that, by construction, each 𝐵𝑖 is on the list of at least one 𝐴𝑗 with j< i. This 

is very important. Consider now 𝐵𝑠  Pair her off with an 𝐴𝑖 on whose list she 

appears (i <s). This frees 𝐵𝑗.Next pair off 𝐵𝑖 with an 𝐴𝑗 (j <i) on whose list she 

appears. This frees 𝐵𝑗. Repeat until some B is freed and re-paired with 𝐴0. This 

must eventually happen. Then take all the new pairings and all the original ones 

which have not been tampered with. Now (r+ 1) pairs have been obtained. Repeat 

the process if r + 1<n.  

This constructive proof, which was communicated to the author by D. J. 

Shoesmith, has the advantage that the conditions (*) need not be checked before 

the construction is attempted. If (*) does not hold, 

this will become clear when the method breaks down. On the other hand, if (*) 

holds, the method will not break down.  

Application to Latin squares  
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The three squares each possess the following properties (for n = 2, 3, 4 

respectively),  

(1) each row contains each of the numbers 1, .. ., 1 exactly once;  

(2) each column contains each of 1, ..., n exactly once.  

These are the properties which characterize Latin squares. An n x n Latin square 

based on the numbers 1, . . ., 1 is thus defined to be an array of n rows and n 

columns satisfying properties (1) and (2) above. Apart from their intrinsic 

mathematical charm, Latin squares do have their uses, and may first have been 

studied because of their uses in the design of experiments. A simple introduction 

to this topic can be found in Fisher’s classical book [1]. 

How are Latin squares constructed? Very easily, in fact, for the next result shows 

that the construction can be carried out a row at a time. The proof requires the 

idea of a Latin rectangle, which is simply a rectangular array with r rows and n 

columns (r≤ n) in which  

(1) each row contains each of 1, ...,n exactly once;  

(3) no column contains a number more than once.  

For example, the first three rows of the 4 x 4 Latin square above give a 3 x 4 Latin 

rectangle. The theorem to be proved is essentially a converse of this result: it 

states that any Latin rectangle can be made into a Latin square by adding further 

rows, without having to alter the rows already there.  

Theorem 2.4: 

 If r <n, any rx n Latin rectangle can be extended to an (r + 1) xn Latin rectangle. 

Proof: 

An (r + 1)th row has to be added, the jth number in which does not yet occur in 

the jth column of the rectangle. This suggests that for each j=1,...,n the set S; 

should be defined as follows:  

Sj = set of numbers between | and n which have not yet appeared in the jth column.  
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To prove the theorem, it is sufficient to show that the sets S; possess distinct 

representatives. These distinct representatives will form the next row.  

Suppose then that the sets S; do not possess distinct representatives. Then by 

Hall’s theorem, there must, for some k, be k sets S; which in their union contain 

less than k numbers. Now clearly each set S; has (n — r) elements, so these k sets 

contain between them k(n — r) numbers, not taking repetitions into account. How 

many times can a number be repeated? Each number has occurred exactly once 

in each row, and hence in exactly r of the columns. Each number therefore occurs 

in exactly (n —r) of the sets Si The k sets therefore contain k(n — r) elements, 

with no element repeated more than (n — r) times, and so must contain at least k 

distinct elements. This gives a contradiction, and the proof is complete.  

Application to tournaments  

Consider a tournament involving n teams in which every team plays against every 

other team exactly once. Such a tournament will have (
𝑛
2
) f games and is often 

called a round-robin tournament. Suppose that each game produces a winner 

which is awarded one point and a loser which gains no point. Then after all 

(
𝑛
2
) games have been played the final points obtained by each team, when written 

in decreasing order, form what is called the score sequence of the tournament.  

Example 2.5. 

A beats B, A beats C, B beats C, D beats A, B beats D, D beats C. So, A, B, and 

D finish with 2 points each and C finishes with none. The score sequence is 

therefore (2, 2, 2, 0).  

Which sequences of m non-negative integers can be realized as the score 

sequence of some tournament? For example, is it possible to have a tournament 

with 6 teams, with score sequence (5, 4, 4, 1, 1, 0)? Certainly, the sum of the 
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scores is 15 =(
6
2
), However, to see that the answer is no, note that the three bottom 

teams have only two points between them, whereas they should have at least three 

points between them since they play 3 =(
3
2
) , games amongst themselves. In 

general, a sequence (𝑎1, 𝑎2, … … . 𝑎𝑛), 𝑎1 ≥ 𝑎2 ≥ ⋯… ≥ 𝑎𝑛, of non-negative 

integers can be a score sequence only if  

 𝑎1 + 𝑎2 + ⋯ … .+𝑎𝑛 = (
𝑛
2
)     ……….. (2.3) 

And 𝑎𝑛−𝑟+1 + 𝑎𝑛−𝑟+2 + ⋯… .+𝑎𝑛 ≥ (
𝑟
2
) for each r, 2 ≤ 𝑟 ≤ 𝑛. …… (2.4) 

The remarkable fact is that these obviously necessary conditions are also 

sufficient.  

Theorem 2.5. (Landau’s theorem).  

The non-negative integers  

as form the score sequence of a tournament if and only if conditions (2.3) and 

(2.4) are satisfied.  

This result will be deduced from Hall’s marriage theorem. In fact, a  

slight generalization of Hall’s theorem is needed, which can be expressed  

in terms of harems rather than marriages; here each man can marry more  

than one woman, but no woman can have more than one husband.  

Theorem 2.6. (The Harem theorem) 

 Let 𝑤1,,..., 𝑤𝑛, be non-negative integers, and suppose that men 𝑀1,,..., 𝑀𝑛, 

each makes a list of the women he is willing to marry. Then each 𝑀𝑖, can be 

married to  𝑤𝑖, women on his list if and only if, for any subset {𝑖1,,..., 𝑖𝑟}of 

{1,...,n}, the lists of men 𝑀𝑖1 , …… .𝑀𝑖𝑟 contain in their union at least 

𝑤𝑖1
, … … .𝑤𝑖𝑟

names.  

Proof: 
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The condition is clearly necessary, so we prove sufficiency. Replace each 

man 𝑀𝑖 by 𝑤𝑖 copies, each of which has the same list as 𝑀𝑖 had. The problem 

is to pair off each copy with a woman on his list. Consider any set of copies, 

consisting of, say, 𝑥𝑖 copies of 𝑀𝑖where 𝑥𝑖  ≤ 𝑤𝑖  , 𝑖 ∈ 𝐼 ⊆ {1, …… 𝑛}.Their  

Their lists contain at least ∑ 𝑤𝑖 ≥ ∑ 𝑥𝑖𝑖∈𝐼𝑖∈𝐼 names, names as men, so by Hall’s 

theorem the copies can be married off.  

Exercises:  

1. If A, = {1, 2}, Az = {4}, A3 = {I, 3}, and A, = {2, 3, 4}, find distinct 

representatives for the sets 𝐴𝑖.  

2. Find a set of distinct representatives for the following sets: {a}, {a, b, c}, 

{c, d}, {b, d, e}, {e, f}, {a, d, g}, {f}.  

3. Construct 2 different 5 x 5 Latin squares which have the same first rows, 

but no other rows the same.  

4. mn newspaper reporters each cover one sport and one foreign country,  

in such a way that each of n sports has m reporters and each of n countries 

has m reporters. Use the previous example to show that it is possible to 

staff m newspapers each with n reporters so that each sport and each 

country is covered by each newspaper.  

     5. Does there exist a tournament with score sequence (a) (4, 4, 1, 1, 0),  

(b) (3, 3, 3, 1, 0)? If yes, construct one: if no, explain why.  
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Unit III 

Recurrence-Fibonacci-type relations using generating functions- Miscellaneous 

methods. 

Chapter 3: Sections 3.1- 3.4 

 

3.Recurrence 

3.1. Some miscellaneous problems: 

Some combinatorial problems reduce to examining a sequence {𝑎𝑛} of numbers 

𝑎1, 𝑎2, 𝑎3, … in the hope of obtaining a formula for the 𝑛th member 𝑎𝑛 of the 

sequence. Often 𝑎𝑛 is expressed in terms of previous members of the sequence, 

i.e. a recurrence relation is given, and also the first few values are given, for 

example 𝑎1 and 𝑎2. The problem is then to deduce a formula for 𝑎𝑛. 

A few such problems are now exhibited. 

Example 3.1: 

The Fibonacci sequence, mentioned in Chapter 1, is defined by 

𝑎1 = 1, 𝑎2 = 2, 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 (𝑛 ⩾ 3), 

and the problem is to find a formula for 𝑎𝑛. This sequence was investigated in 

the 13th century by Leonardo Fibonacci of Pisa, in connection with the growth 

of the rabbit population.  

Example 3.2:  

Some combinatorial problems in chemistry reduce to counting the number of 

graphs of a certain type. A tree is defined to be a connected graph with no cycles, 

i.e. a connected graph in which it is impossible to start at a vertex, move along 

different edges and arrive back at the starting place. Examples of trees are shown 

in Fig. 3.1, 
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Fig. 3.1 

whereas the graph in Fig. 3.2 is not a tree, one cycle being 𝑎𝑏𝑐𝑑. Trees can be 

used to represent the structure of chemical compounds, and it was in this way that 

Cayley was led to his studies of graph theory in the 1870 s. 

As an example of the type of problem involved, consider the problem of counting 

simple rooted trees. A simple tree is defined to be a tree in 

 

Fig. 3.2 

which each vertex is of degree ⩽ 3. (Recall that the degree of a vertex is the 

number of edges emanating from it.) One way of looking at a simple tree is to 

consider it as a road system in which one has a choice of at most two roads at 

each roadend. The simple trees to be considered are those rooted at a certain 

vertex 𝑃 (see Fig. 3.3). 𝑃 can be considered as the 

 

Fig. 3.3 
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starting point of the tree's growth, and in accordance with the requirement that at 

most two edges are available on reaching any vertex, it will be assumed that there 

are at most two edges emanating from 𝑃. An example of such a rooted simple tree 

is shown. The problem is to evaluate 𝑢𝑛, the number of different rooted simple 

trees with 𝑛 vertices. 

A difficulty, fundamental to most combinatorial problems, immediately arises. 

When are two trees to be considered different? For example, are the two trees in 

Fig. 3.4 the same or different? After all, in any practical realization, (a) can be 

picked up and turned over to give (b). 

 

Fig. 3.4 

Since it is a good idea to start with as simple a problem as possible, it will be 

considered here that (a) and (b) are distinct. Then 

 

 

and so on. In evaluating 𝑢𝑛 , 𝑛 ⩾ 2, two types of trees have to be considered. Let 
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𝑠𝑛 denote the number with only one edge from the root 𝑃, and let 𝑑𝑛 denote the 

number with two edges from 𝑃. Clearly 

𝑢𝑛 = 𝑠𝑛 + 𝑑𝑛. (𝑛 ⩾ 2) (3.1) 

Now consider 𝑠𝑛+1. A tree contributing to 𝑠𝑛+1 is of the form 

 

 

where, inside the circle, there can be any simple tree with 𝑛 vertices rooted at 𝑄. 

There are 𝑢𝑛 such trees. Thus 

𝑠𝑛+1 = 𝑢𝑛. (3.2) 

Next consider 𝑑𝑛+1. A tree contributing to 𝑑𝑛+1 is of the form 

 

 

 

 

where there is a rooted simple tree at 𝑄 with, say, 𝑟 vertices, and a rooted simple 

tree at 𝑅 with 𝑠 vertices, 𝑟 + 𝑠 = 𝑛, 𝑟 ⩾ 1, 𝑠 ⩾ 1. For each such pair of values 

of 𝑟 and 𝑠 there are 𝑢𝑟 choices of what happens at 𝑄 and 𝑢𝑠 choices at 𝑅; 𝑢𝑟𝑢𝑠 

choices altogether. Thus 
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𝑑𝑛+1  = 𝑢1𝑢𝑛−1 + 𝑢2𝑢𝑛−2 + ⋯ + 𝑢𝑛−1𝑢1

 = ∑  
𝑟+𝑠=𝑛

𝑟⩾1,𝑠⩾1

 𝑢𝑟𝑢𝑠 .         …………      (3.3)  

The relations (4.1) to (4.3) then yield 

𝑢𝑛+1 = 𝑠𝑛+1 + 𝑑𝑛+1

 = 𝑢𝑛 + ∑  
𝑟+𝑠=𝑛

𝑟⩾1,𝑠⩾1

 𝑢𝑟𝑢𝑠 , 

i.e. 

𝑢𝑛 = 𝑢𝑛−1 + (𝑢1𝑢𝑛−2 + 𝑢2𝑢𝑛−3 + ⋯ + 𝑢𝑛−2𝑢1). (3.4) 

How is a formula for 𝑢𝑛 obtained from this recurrence relation? 

Example 3.3: 

The problem of derangements. Suppose that 𝑛 jobs have been assigned to 𝑛 

people. In how many ways can they be reassigned the following day so that no 

person is given the same job as before? 

In general, a derangement of the numbers 1,2, … , 𝑛 is a rearrangement or 

permutation of them such that no number appears in its original position. For 

example, 23514 is a derangement of 12345, but 23541 is not. Let 𝑎𝑛 denote the 

required number; then 𝑎𝑛 is simply the number of derangements of 1, … , 𝑛, for it 

can be supposed that the jobs are so labelled that the 𝑖 th person got the 𝑖 th job 

on the first day. 

Clearly 𝑎1 = 0 (why?), 𝑎2 = 1, 𝑎3 = 2. To see that 𝑎3 = 2, note that the only 

derangements of 123 are 231 and 312. 

Suppose now that 𝑛 > 2, and consider two possibilities. The first possibility is 

that in a derangement of 1,… , 𝑛 the number 𝑛 changes places with some other 

number 𝑟. There are ( 𝑛 − 1 ) choices for 𝑟, and for each such choice the 

remaining ( 𝑛 − 2 ) numbers must undergo a derangement. The number of ways 
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this can happen is (𝑛 − 1)𝑎𝑛−2, and this therefore gives the number of 

derangements of 1, … , 𝑛 in which 𝑛 changes places with another number. The 

second possibility to consider is when some number 𝑟 moves to the 𝑛th place, but 

𝑛 does not move to the 𝑟 th place. In this case, ignore 𝑟 which has now been 

placed, and relabel 𝑛 by 𝑟. This gives (𝑛 − 1) numbers 1,… , (𝑛 − 1) to arrange, 

and the condition is again simply that no 𝑖 is to placed in the 𝑖 th place. There are 

𝑎𝑛−1 such derangements for each of the 𝑛 − 1 choices of 𝑟, and so (𝑛 − 1)𝑎𝑛−1 

derangements of this type. Thus 

𝑎𝑛 = (𝑛 − 1)𝑎𝑛−1 + (𝑛 − 1)𝑎𝑛−2 (3.5) 

and the problem is how to solve this recurrence relation subject to the boundary 

conditions 𝑎1 = 0, 𝑎2 = 1. 

Exercises 1: 

1. Use (4.4) to find 𝑢5, and check your answer by drawing all possible 

rooted simple trees with 5 vertices. 

2. Use (4.5) to find 𝑎4, and check your answer by writing down all the 

possible derangements of 1234. 

3. Suppose that any newborn pair of rabbits will produce their first pair of 

offspring after two months, and thereafter will produce one pair per 

month. Starting with one newborn pair, the growth of population is as 

follows, where 𝐴 denotes a newborn pair, 𝐵 a month-old pair, and 𝐶 a 

fully-adult pair: 

after 1 month 𝐵 

2 months 𝐶𝐴 

3 𝐶𝐵𝐴 

4 𝐶𝐶𝐵𝐴𝐴 
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Prove that 𝑎𝑛, the number of pairs of rabbits in the population after 𝑛 months, 

satisfies 𝑎1 = 1, 𝑎2 = 2, 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2(𝑛 ⩾ 3). It is to be assumed that no 

deaths occur! 

3.2. Fibonacci-type relations: 

A method of solving recurrence relations of the form 

𝑎𝑛 = 𝐴𝑎𝑛−1 + 𝐵𝑎𝑛−2 (𝑛 ⩾ 3) (3.6) 

is now given, where 𝐴 and 𝐵 are non-zero constants. As is shown, the method is 

essentially just that of solving the associated quadratic equation 

𝑥2 = 𝐴𝑥 + 𝐵. 

Theorem 3.1.  

Suppose that 𝑎1 and 𝑎2 are given and that (3.6) holds. Then 

(1) if the roots 𝛼, 𝛽 of the equation 𝑥2 = 𝐴𝑥 + 𝐵 are distinct, then 

𝑎𝑛 = 𝐾1𝛼
𝑛 + 𝐾2𝛽

𝑛 

where the constants 𝐾1, 𝐾2 are determined uniquely by 𝑎1 and 𝑎2; 

(2) if 𝑥2 = 𝐴𝑥 + 𝐵 has repeated root 𝛼, then 

𝑎𝑛 = (𝐾1 + 𝑛𝐾2)𝛼
𝑛 

Example 3.4: 

The Fibonacci sequence. Here 𝐴 = 𝐵 = 1, so consider the equation 𝑥2 = 𝑥 + 1. 

This has roots 

𝛼 =
1

2
(1 + √5), 𝛽 =

1

2
(1 − √5) 

so that 

𝑎𝑛 = 𝐾1 (
1 + √5

2
)

𝑛

+ 𝐾2 (
1 − √5

2
)

𝑛

 

for some constants 𝐾1, 𝐾2. Since 𝑎1 = 1 and 𝑎2 = 2, 



 

36 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  
 

 

1 = 𝐾1 (
1 + √5

2
) + 𝐾2 (

1 − √5

2
) 

and 

2 = 𝐾1 (
3 + √5

2
) + 𝐾2 (

3 − √5

2
) 

These give 

𝐾1 =
√5 + 1

2√5
,𝐾2 =

√5 − 1

2√5
 

so that 

𝑎𝑛 =
1

√5
(
1 + √5

2
)

𝑛+1

−
1

√5
(
1 − √5

2
)

𝑛+1

 

This may at first sight seem rather odd, since it is known that 𝑎𝑛 must be an 

integer. However, all the √5 terms cancel out. The binomial theorem gives 

𝑎𝑛 =
1

√5
⋅

1

2𝑛+1 {∑  

𝑛+1

𝑟=0

  (
𝑛 + 1

𝑟
) 5𝑟/2 − ∑  

𝑛+1

𝑟=0

 (
𝑛 + 1

𝑟
) (−1)𝑟5𝑟/2}

 =
1

√5
⋅

1

2𝑛 {(
𝑛 + 1

1
)51/2 + (

𝑛 + 1

3
)53/2 + (

𝑛 + 1

5
) 55/2 + ⋯ }

 =
1

2𝑛 ((
𝑛 + 1

1
) + 5 (

𝑛 + 1

3
) + 52 (

𝑛 + 1

5
) + ⋯ }

 

which is an interesting result since it is not immediately obvious that the sum in 

the brackets must be divisible by 2𝑛. 

Note, further, that since 0 <
1

2
(√5 − 1) < 1, (

1−√5

2
)
𝑛+1

→ 0 as 𝑛 → ∞; so 𝑎𝑛 is 

approximated by 
1

√5
(
1+√5

2
)
𝑛+1

; in fact 𝑎𝑛 is just the integer nearest to this 

value. 

Proof of Theorem 3.1. (1) The idea is to explore when 𝑎𝑛 = 𝑎𝑛 can be a 

solution of (3.6). Now 𝑎𝑛 = 𝛼𝑛 satisfies (4.6) precisely 



 

37 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  
 

 

 when 𝛼𝑛 = 𝐴𝛼𝑛−1 + 𝐵𝛼𝑛−2, i.e. when 𝛼2 = 𝐴𝛼 + 𝐵, i.e. when 𝛼 is a root of 

the quadratic equation 𝑥2 = 𝐴𝑥 + 𝐵. Thus, if the quadratic equation has two 

distinct roots 𝛼, 𝛽, then 𝑎𝑛 = 𝛼𝑛 and 𝑎𝑛 = 𝛽𝑛 are both solutions of (3.6). It 

follows that if 𝐾1 and 𝐾2 are constants then 𝑎𝑛 = 𝐾1𝛼
𝑛 + 𝐾2𝛽

𝑛 is also a 

solution; for 

𝐴𝑎𝑛−1 + 𝐵𝑎𝑛−2 = 𝐴(𝐾1𝛼
𝑛−1 + 𝐾2𝛽

𝑛−1) + 𝐵(𝐾1𝛼
𝑛−2 + 𝐾2𝛽

𝑛−2)

 = 𝐾1(𝐴𝛼𝑛−1 + 𝐵𝛼𝑛−2) + 𝐾2(𝐴𝛽𝑛−1 + 𝐵𝛽𝑛−2)

 = 𝐾1𝛼
𝑛 + 𝐾2𝛽

𝑛 = 𝑎𝑛

 

The values of 𝑎1 and 𝑎2 will determine 𝐾1 and 𝐾2 uniquely; for the equations 

𝑎1 = 𝐾1𝛼 + 𝐾2𝛽, 𝑎2 = 𝐾1𝛼
2 + 𝐾2𝛽

2 have solution 

𝐾1 =
𝑎1𝛽 − 𝑎2

𝛼(𝛽 − 𝛼)
, 𝐾2 =

𝑎1𝛼 − 𝑎2

𝛽(𝛼 − 𝛽)
 

(Note that 𝛼 − 𝛽 ≠ 0 since 𝛼 ≠ 𝛽, and 𝛼, 𝛽 ≠ 0 since 𝐵 ≠ 0.) 

(2) In this case it is sufficient to verify that, if 𝛼 is a repeated root of the 

quadratic, then 𝑎𝑛 = 𝑛𝛼𝑛 also satisfies (4.6). Note that 

𝐴𝑎𝑛−1 + 𝐵𝑎𝑛−2 = 𝐴(𝑛 − 1)𝛼𝑛−1 + 𝐵(𝑛 − 2)𝛼𝑛−2

 = 𝑛(𝐴𝛼𝑛−1 + 𝐵𝛼𝑛−2) − 𝛼𝑛−2(𝛼𝐴 + 2𝐵)

 = 𝑛𝛼𝑛 − 𝐴𝛼𝑛−1 − 2𝐵𝛼𝑛−2

 

But if 𝛼 is a repeated root of 𝑥2 = 𝐴𝑥 + 𝐵 then 𝑥2 − 𝐴𝑥 − 𝐵 = (𝑥 − 𝛼)2 =

𝑥2 − 2𝛼𝑥 + 𝛼2, so that 𝐴 = 2𝛼 and 𝐵 = −𝛼2; so 

𝐴𝑎𝑛−1 + 𝐵𝑎𝑛−2 = 𝑛𝛼𝑛 − 2𝛼𝑛 + 2𝛼𝑛 = 𝑛𝛼𝑛 = 𝑎𝑛 

as required. 

Note that this theorem and its proof will easily generalize to recurrence relations 

of the form 

𝑎𝑛 = 𝐴1𝑎𝑛−1 + 𝐴2𝑎𝑛−2 + ⋯ + 𝐴𝑟𝑎𝑛−𝑟 

for any fixed 𝑟 : for example, if 𝑥3 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶 has 3 distinct roots 𝛼, 𝛽, 𝛾 

then 𝑎𝑛 = 𝐾1𝛼
𝑛 + 𝐾2𝛽

𝑛 + 𝐾3𝛾
𝑛 will be a solution of 
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𝑎𝑛 = 𝐴𝑎𝑛−1 + 𝐵𝑎𝑛−2 + 𝐶𝑎𝑛−3 

Example 3.5: 

Solve 𝑎𝑛 = 6𝑎𝑛−1 − 11𝑎𝑛−2 + 6𝑎𝑛−3 given that 𝑎1 = 2, 𝑎2 = 6, 𝑎3 = 20. 

Solution. The equation 𝑥3 = 6𝑥2 − 11𝑥 + 6 has solutions 𝑥 = 1,2,3; so the 

general solution of the recurrence relation is 

𝑎𝑛 = 𝐴1𝑛 + 𝐵2𝑛 + 𝐶3𝑛 

The given boundary conditions give 2 = 𝐴 + 2𝐵 + 3𝐶, 6 = 𝐴 + 4𝐵 + 9𝐶, 

20 = 𝐴 + 8𝐵 + 27𝐶, so that 𝐴 = 𝐶 = 1, 𝐵 = −1. Thus, the solution is 

𝑎𝑛 = 1 − 2𝑛 + 3𝑛 

Exercises 2: 

1. If 𝑎𝑛 = 4(𝑎𝑛−1 − 𝑎𝑛−2) for each 𝑛 ⩾ 3, and if 𝑎1 = 0, 𝑎2 = 4, find 𝑎𝑛. 

2. If 𝑎𝑛 = 5𝑎𝑛−1 − 6𝑎𝑛−2 for each 𝑛 ⩾ 3, and if 𝑎1 = 𝑎2 = 1, find 𝑎𝑛. 

3. If 𝑎𝑛 denotes the 𝑛th Fibonacci number, prove that 

𝑎𝑛+2 = 𝑎𝑛 + 𝑎𝑛−1 + ⋯ + 𝑎1 + 2 

4. Let 𝑏𝑛 = (𝑛
0
) + (𝑛−1

1
) + (𝑛−2

2
) + ⋯ Verify that 𝑏1 = 1, 𝑏2 = 2, and show 

that 𝑏𝑛 = 𝑏𝑛−1 + 𝑏𝑛−2(𝑛 ⩾ 3). Thus 𝑏𝑛 gives another formula for the 

Fibonacci numbers. 

5. If 𝑎𝑛 is the 𝑛th Fibonacci number, prove that 

𝑎𝑛
2 − 𝑎𝑛−1𝑎𝑛+1 = (−1)𝑛 

6. In working through a problem, a man is said to be at the 𝑛th stage if he is 

𝑛 steps from the solution. At any stage he has 5 choices. Two of these result 

in him going to the ( 𝑛 − 1 )th stage, and three of them are better in that 

they take him direct to the ( 𝑛 − 2 ) th stage. Let 𝑎𝑛 denote the number of 

ways he can reach the solution from the 𝑛th 

stage. If 𝑎1 = 2, verify that 𝑎2 = 7 and obtain a recurrence relation for 𝑎𝑛. 

Deduce that 
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𝑎𝑛 =
1

4
{3𝑛+1 + (−1)𝑛} 

7. Find 𝑎𝑛 if 𝑎𝑛 = 4𝑎𝑛−1 + 4𝑎𝑛−2 − 16𝑎𝑛−3, 𝑎1 = 8, 𝑎2 = 4, 𝑎3 = 24. 

8. Find 𝑎𝑛 if 𝑎𝑛 = 5𝑎𝑛−1 − 8𝑎𝑛−2 + 4𝑎𝑛−3, 𝑎1 = 4, 𝑎2 = 8, 𝑎3 = 20. 

9. The 𝑛 × 𝑛 determinant 𝐷𝑛 is defined for 𝑛 ⩾ 1 by 

𝐷𝑛 = |
|

1 + 𝑎2 𝑎 0 0 … 0
𝑎 1 + 𝑎2 𝑎 0 … 0
0 𝑎 1 + 𝑎2 𝑎 … 0
⋮
0 0 0 0 … 1 + 𝑎2

|
| 

Show that, if 𝑛 ⩾ 3, 𝐷𝑛 = (1 + 𝑎2)𝐷𝑛−1 − 𝑎2𝐷𝑛−2 and hence show that 

𝐷𝑛 =
1−𝑎2𝑛+2

1−𝑎2
  if 𝑎2 ≠ 1What if 𝑎2 = 1 ? 

10. Let 𝑎𝑛 denote the number of 𝑛-digit sequences in which each digit is 0 or 1 , 

no two consecutive 0 s being allowed. Show that 𝑎1 = 2, 𝑎2 = 3 and that 𝑎𝑛 =

𝑎𝑛−1 + 𝑎𝑛−2(𝑛 ⩾ 3). Hence find 𝑎𝑛. 

11. Let 𝑏𝑛 denote the number of 𝑛-digit sequences in which each digit is  

      0,1, or -1, if no two consecutive 1 s or consecutive -1 s are allowed. Prove      

      that 𝑏𝑛 = 2𝑏𝑛−1 + 𝑏𝑛−2(𝑛 ⩾ 3) and hence find 𝑏𝑛. 

12. A flag is to be designed with 𝑛 horizontal strips each of which can be any 

one of the colours red, blue, green and yellow. Find the number of different 

designs possible in each of the following situations: 

(a) there is no restriction on the colour of each stripe; 

(b) no two adjacent stripes have the same colour; 

(c) no two adjacent stripes have the same colour, nor do the top and bottom 

stripes. 

13. Let 𝑎𝑛 denote the number of ways of filling a 2 × 𝑛 array with 1 × 2 

dominoes. Verify that 𝑎1 = 1, 𝑎2 = 2, and show that 𝑎𝑛 is the 𝑛th Fibonacci 

number. 
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14. Now let 𝑎𝑛 denote the number of ways of filling a 3 × 2𝑛 array with 1 × 2 

dominoes. Arrange the sides of length 3 to be vertical, and let 𝑥𝑛 , 𝑦𝑛 be, 

respectively, the number of solutions in which the right-hand end has, does not 

have, 3 dominoes touching it. Then 𝑎𝑛 = 𝑥𝑛 + 𝑦𝑛. Show that 𝑥𝑛+1 = 𝑥𝑛 + 𝑦𝑛 

and 𝑦𝑛+1 = 2𝑥𝑛 + 3𝑦𝑛. Deduce that 𝑎𝑛+2 = 4𝑎𝑛+1 − 𝑎𝑛 and hence obtain a 

formula for 𝑎𝑛. 

15. A primitive organism takes one hour to mature. At the end of the next hour it 

produces two offspring and does the same each subsequent hour. Each offspring 

behaves in a similar fashion. Start with one newly born organism and let 𝑎𝑛 

denote the number of organisms existing after 𝑛 hours. Prove that 𝑎𝑛 = 𝑎𝑛−1 +

2𝑎𝑛−2 and hence find a formula for 𝑎𝑛. 

16. Repeat the previous problem with the difference that each organism dies 

immediately after producing its first pair of offspring. 

3.3. Using generating functions: 

The recurrence relation (3.4) obtained on counting rooted simple trees does not 

look too attractive; it looks too difficult to deal with. It sometimes happens that 

such relations are better dealt with by means of generating functions. As was 

explained in the opening chapter, the generating function for a given sequence 

𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛 , … is defined to be 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯ + 𝑎𝑛𝑥𝑛 + ⋯ 

where the coefficient of 𝑥𝑛 in 𝑓(𝑥) is precisely the term 𝑎𝑛 of the sequente. 

Let 𝑢(𝑥), 𝑠(𝑥), and 𝑑(𝑥) be the generating functions for Example 3.2, where 

𝑢(𝑥) = 𝑢1𝑥 + 𝑢2𝑥
2 + 𝑢3𝑥

3 + ⋯

 = 𝑥 + 𝑥2 + 2𝑥3 + ⋯
𝑠(𝑥) = 𝑠1𝑥 + 𝑠2𝑥

2 + 𝑠3𝑥
3 + ⋯

 = 𝑥2 + 𝑥3 + 2𝑥4 + ⋯
𝑑(𝑥) = 𝑑1𝑥 + 𝑑2𝑥

2 + 𝑑3𝑥
3 + ⋯

 = 𝑥3 + 2𝑥4 + ⋯
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on noting that 𝑠1 = 𝑑1 = 𝑑2 = 0 (why?). From (4.1), 

𝑢(𝑥) = 𝑥 + 𝑠(𝑥) + 𝑑(𝑥) (3.7) 

Also, since 𝑠𝑛+1 = 𝑢𝑛, 

𝑠(𝑥) = 𝑥𝑢(𝑥), (3.8) 

as can be checked by comparing the coefficients of any power of 𝑥 on each side 

of the equation. Finally, from (3.3), it follows that 

𝑑(𝑥) = 𝑥{𝑢(𝑥)}2. (3.9) 

If (a) and (b) are considered the same, the resulting counting problem is much 

more difficult, and the ideas of Polya's theorem are required. Equations (3.7)-

(3.9) together give 

𝑢(𝑥) = 𝑥 + 𝑥𝑢(𝑥) + 𝑥{𝑢(𝑥)}2, 

i.e. 

𝑥{𝑢(𝑥)}2 + (𝑥 − 1)𝑢(𝑥) + 𝑥 = 0, (3.10) 

which is a quadratic equation for 𝑢(𝑥). The usual formula for solving such 

equations then gives 

𝑢(𝑥)=
1

2𝑥
[1 − 𝑥 ± √{(𝑥 − 1)2 − 4𝑥2}]  

 =
1

2𝑥
[1 − 𝑥 ± √{1 − (2𝑥 + 3𝑥2)}](3.11)

 

Now, by the binomial theorem, 

(1 − 𝑦)
1
2 = 1 −

1

2
𝑦 −

1
2

⋅
1
2

𝑦2

2!
−

1
2

⋅
1
2

⋅
3
2

𝑦3

3!
− ⋯⋯ −

1 ⋅ 3 ⋅ 5… (2𝑛 − 3)

2𝑛𝑛!
𝑦𝑛 − ⋯ (3.12)

 

so that, on taking the minus sign in (4.11) to obtain positive coefficients 𝑢𝑛, 

𝑢(𝑥)=
1

2𝑥
[−𝑥 +

1

2
(2𝑥 + 3𝑥2) +

1

222!
(2𝑥 + 3𝑥2)2 + ⋯ ] 

 = 𝑥 + 𝑥2 + 2𝑥3 + 4𝑥4 + ⋯ (3.13)
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Technically, the problem is now solved. To find 𝑢𝑛, all that need be done is to 

read off the coefficient of 𝑥𝑛 in (4.13). If ℎ𝑛 denotes the numerical value of the 

coefficient of 𝑦𝑛 in (4.12), so that 

ℎ𝑛 =
(2𝑛 − 2)!

22𝑛−1𝑛! (𝑛 − 1)!
 

then it is straightforward to verify that 

𝑢𝑛−1 =
1

2
{ℎ𝑛2𝑛 + ℎ𝑛−12

𝑛−2 ⋅ 3 ⋅ (
𝑛 − 1

1
) + ℎ𝑛−22

𝑛−432 (
𝑛 − 2

2
) +

+ ⋯+ ℎ𝑛−𝑟2
𝑛−2𝑟3𝑟 (

𝑛 − 𝑟

𝑟
)+⋯ }(3.14)

 

This formula for 𝑢𝑛 has its unattractive side. It is not very compact, and a certain 

amount of effort is still required to evaluate 𝑢𝑛 for any specific value of 𝑛, 

particularly when 𝑛 is large. However, all that is involved is essentially the 

substitution of the particular value of 𝑛 into (3.14), and this is all that is required 

of a formula. Some mathematicians would take the view that the problem of 

finding 𝑢𝑛 was in fact solved well before this final formula was obtained-at the 

stage (3.13) of obtaining the generating function 𝑢(𝑥), since the values of all the 

coefficients 𝑢𝑛 are implicit in 𝑢(𝑥). This book will take the view that an explicit 

formula is to be preferred to simply a generating function solution, and such a 

formula should be aimed at whenever possible. 

Further examples on generating functions 

Example 3.6. Suppose that, in the problem posed at the beginning of Chapter 1, 

there are 4 colours available (i.e. 𝑛 = 4 ). How many colourings of the 𝑘 golf 

balls are possible if there must be an odd number of objects coloured with the 

first colour? 

Solution (1). As in the second approach to the original problem, the required 

number is the coefficient of 𝑥𝑘 in 
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(𝑥 + 𝑥3 + 𝑥5 + ⋯ )(1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ )3

= 𝑥(1 + 𝑥2 + 𝑥4 + ⋯ )(1 − 𝑥)−3, 

which is just the coefficient of 𝑥𝑘−1 in 

(1 + 𝑥2 + 𝑥4 + ⋯ ) (1 + (
3

1
) 𝑥 + (

4

2
) 𝑥2 + (

5

3
) 𝑥3 + ⋯ ). 

This coefficient is 

(𝑘+1
𝑘−1

) + (𝑘−1
𝑘−3

) + (𝑘−3
𝑘−5

) + ⋯ = (𝑘+1
2

) + (𝑘−1
2

) + (𝑘−3
2

) + ⋯. 

For example, 𝑘 = 6 gives 34 possible colourings. 

Solution (2). Alternatively, if exactly one ball is coloured with the first colour, 

there are ( 𝑘 − 1 ) balls left to be coloured with 3 colours. By the result (1.6), 

this can be done in (𝑘−1+3−1
𝑘−1

) = (𝑘+1
𝑘−1

) ways. Similarly, if exactly 3 are coloured 

with the first colour, the remaining (𝑘 − 3) can be coloured in 

 (𝑘−3+3−1
𝑘−3

) = (𝑘−1
𝑘−3

) ways. Continuing in this way the same result is obtained as 

before. 

Example 3.7: 

 𝑛-digit integer sequences are to be formed using only the integers 0,1,2,3. For 

example, 0031 and 3202 are two 4 -digit sequences. 

(a) How many 𝑛-digit sequences are there? 

(b) How many 𝑛-digit sequences have an odd number of 0 s? 

Solution: 

 (a) The number of sequences is 4𝑛, since there are 4 choices for each of the 𝑛 

digits. 

(b) This is not so easy. The difference between the problem posed here and 

Example 3.5 is that here it matters not only what digits appear, but also in what 

order they occur. 
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Any 𝑛-digit sequence will consist of 𝑑00 s, 𝑑11 s, 𝑑22 s and 𝑑33 s, where 𝑑0 is 

odd and 𝑑0 + 𝑑1 + 𝑑2 + 𝑑3 = 𝑛. Any given set of 𝑑 s satisfying these conditions 

will give rise to as many different sequences as there are ways of arranging the 𝑛 

numbers in a line. If the 𝑛 numbers were all distinct, there would be 𝑛! 

permutations. Thus, if the 𝑛 digits are labelled so that digits of the same kind are 

distinguishable from one another, there are 𝑛! permutations. However, two of 

these permutations will be the same when the labels are removed if and only if 

they differ only in the arrangement of the 𝑑00 s among themselves, the 𝑑11 s, the 

𝑑22 s, and the 𝑑33 s.Thus each permutation of the unlabelled digits corresponds 

to 𝑑0! 𝑑1! 𝑑2! 𝑑3! permutations of the labelled digits.Thus the number of distinct 

sequences with 𝑑00 s, 𝑑11 s, 𝑑22 s, and 𝑑33 s is 

𝑛!

𝑑0! 𝑑1! 𝑑2! 𝑑3!
 

Hence the total number of sequences is equal to 

∑ 
𝑛!

𝑑0! 𝑑1! 𝑑2! 𝑑3!
(3.15) 

where the sum is over all sets of numbers 𝑑0, … , 𝑑3 such that 𝑑0 is odd and 

𝑑0 + 𝑑1 + 𝑑2 + 𝑑3 = 𝑛. On looking for a possible generating function, the 

factorials on the denominator lead one to try the exponential function exp (𝑥) 

introduced in Example 2.10. So consider 

(𝑥 +
𝑥3

3!
+

𝑥5

5!
+ ⋯ )(1 + 𝑥 +

𝑥2

2!
+

𝑥3

3!
+ ⋯ )(1 + 𝑥 +

𝑥2

2!
+ ⋯ ) . 0 

 × (1 + 𝑥 +
𝑥2

2!
+ ⋯ )………(3.16)
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The coefficient of 𝑥𝑛 is 
1

𝑛!
 times the number given by (4.15), as can be seen by 

considering the ways in which 𝑥𝑛 can be obtained by selecting a term from each 

bracket and multiplying them together. But (4.16) is 

(𝑥 +
𝑥3

3!
+

𝑥5

5!
+ ⋯ ) {exp (𝑥)}3 = (𝑥 +

𝑥3

3!
+

𝑥5

5!
+ ⋯ )exp (3𝑥) 

 =
1

2
(exp (𝑥) − exp (−𝑥))exp (3𝑥)

 =
1

2
(exp (4𝑥) − exp (2𝑥))

 

The coefficient of 𝑥𝑛 in this is 

1

2
(
4𝑛

𝑛!
−

2𝑛

𝑛!
) 

The number of sequences is 𝑛! times this number, namely 

1

2
(4𝑛 − 2𝑛) 

For another method of solving this example, see Exercises 3, question 4. As far 

as the above solution is concerned, the reader should remember not so much the 

answer as the idea of making use of the properties of exp (𝑥). 

Example 4.8: 

Partitions of an integer. Ideas from number theory have the habit of appearing 

all over the place and when least expected. One such idea is that of a partition of 

an integer. By a partition of a positive integer 𝑛 is meant the expression of 𝑛 as 

a sum of positive integers. For example, 5 has seven partitions: 

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1
 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

 

Note that 5 itself is a partition of 5. Let 𝑝(𝑛) denote the number of partitions of 

𝑛, so that 𝑝(5) = 7, and let 𝑓(𝑥) be the generating function, 

𝑓(𝑥) = 𝑝(1)𝑥 + 𝑝(2)𝑥2 + ⋯ + 𝑝(𝑛)𝑥𝑛 + ⋯ 
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Consider the expression 

 (1 − 𝑥)−1(1 − 𝑥2)−1(1 − 𝑥3)−1 …

 = (1 + 𝑥 + 𝑥2 + ⋯ )(1 + 𝑥2 + 𝑥4 + ⋯ )(1 + 𝑥3 + 𝑥6 + ⋯ )… .
 

What is the coefficient of 𝑥𝑛 in this expression? Note that 𝑛𝑥 s can be obtained 

by selecting a power of 𝑥 from the first bracket, another from the second, and so 

on, and multiplying them together. Thus if 𝑥𝑖𝑎𝑖  is chosen from the 𝑖 th bracket, 

𝑥𝑛 will be obtained if 𝑛 is the sum of 𝑎11 s, 𝑎22 s, and so on. Thus 𝑥𝑛 will be 

obtained as many times as 𝑛 has different partitions, so that the coefficient of 𝑥𝑛 

must be 𝑝(𝑛). This proves that the generating function is 

𝑓(𝑥) = (1 − 𝑥)−1(1 − 𝑥2)−1(1 − 𝑥3)−1 …. 

Although such a generating function does not yield a formula for 𝑝(𝑛) easily, it 

turns out to be useful enough to yield properties of partitions. For an example of 

this, see the exercises below. 

Exercises 3: 

1. Let 𝑓(𝑥) denote the generating function of the Fibonacci numbers. Show 

that the recurrence relation gives 

𝑓(𝑥) = 𝑥 + 2𝑥2 + 𝑥(𝑓(𝑥) − 𝑥) + 𝑥2𝑓(𝑥) 

         so that (1 − 𝑥 − 𝑥2)𝑓(𝑥) = 𝑥 + 𝑥2 

       Deduce that 

𝑓(𝑥) = (𝑥 + 𝑥2){1 − (𝑥 + 𝑥2)}−1

 = (𝑥 + 𝑥2){1 + 𝑥(1 + 𝑥) + 𝑥2(1 + 𝑥)2 + ⋯ }
 

Read off the coefficient of 𝑥𝑛 in this expression, and check that your answer 

agrees with Exercises 2, question 4. 

2. Suppose that 𝑛 objects lie in a straight line. Two adjacent objects are chosen 

and bracketed together, and thereafter are considered as just one object. This 

results in ( 𝑛 − 1 ) objects in a line. Two of these ( 𝑛 − 1 ) objects which are 
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adjacent are then bracketed together and thereafter considered as just one object. 

This process is continued until only one object is left. Let 𝑎𝑛 denote the number 

of ways the process can be carried out, starting with 𝑛 objects, so that 𝑎1 = 1, 

𝑎2 = 1, 𝑎3 = 2. By observing that in the last bracketing there are 

grouped together 𝑟 original objects and ( 𝑛 − 𝑟 ) original objects, for some 𝑟, 

show that 

𝑎𝑛 = 𝑎1𝑎𝑛−1 + 𝑎2𝑎𝑛−2 + ⋯ + 𝑎𝑛−1𝑎1 (𝑛 ⩾ 3). 

Deduce that the generating function 𝑓(𝑥) satisfies 

{𝑓(𝑥)}2 − 𝑓(𝑥) + 𝑥 = 0, 

and hence show that - 

𝑎𝑛 =
(2𝑛 − 2)!

𝑛! (𝑛 − 1)!
. 

3. Solve 𝑎𝑛 = 6𝑎𝑛−1 − 9𝑎𝑛−2 subject to the initial conditions 𝑎𝑛 = 2, 𝑎1 =

6 by writing 𝑓(𝑥) = ∑  ∞
𝑛=0 𝑎𝑛𝑥𝑛 and showing that 𝑓(𝑥) = 2(1 − 3𝑥)−1. 

4. Solve Example 4.7(b) as follows. Let 𝑎𝑛 be the required number of 𝑛-

digit sequences. By considering whether or not a given sequence begins 

with a 0 , show that 

𝑎𝑛+1 = 3𝑎𝑛 + (4𝑛 − 𝑎𝑛), i.e. 𝑎𝑛+1 = 2𝑎𝑛 + 4𝑛 . 

            Put 𝑓(𝑥) = ∑  ∞
𝑛=1 𝑎𝑛𝑥𝑛 and show that 

𝑓(𝑥) =
𝑥

(1 − 2𝑥)(1 − 4𝑥)
 

            whence 𝑎𝑛 =
1

2
(4𝑛 − 2𝑛). 

5. Let 𝑏𝑛 denote the number of ways in which the sum 𝑛 can be obtained on    

     rolling a die any number of times. Show that the generating function for the     

     𝑏𝑖  is 

(1 − 𝑥 − 𝑥2 − 𝑥3 − 𝑥4 − 𝑥5 − 𝑥6)−1. 
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6. (Harary and Read (1970). Proc. Edinburgh math. Soc.). Certain organic 

chemical compounds built up from benzene rings can be represented by 

hexagons joined together: 

 

 

      Benzene                           Naphthalene 

 

 

 

             Anthracene                                      Phenanthracine 

This raises the question: how many ways are there of combining together 𝑛 

hexagons? Simplify the problem as follows. First do not allow three hexagons to 

have a vertex in common. This means, for example, that a third hexagon cannot 

be nestled under two of the anthracene hexagons. Secondly, suppose that the 

configurations are all growing from a fixed spot, so that there is one fixed base 

hexagon. Onto this hexagon can be fitted either one hexagon (on any of the sides 

𝑎, 𝑏, 𝑐 ) or two hexagons (one on each of 𝑎 and 𝑐 ). 
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Let ℎ𝑛 denote the total number of possible patterns with 𝑛 hexagons. Let 𝑠𝑛, 𝑑𝑛 

denote respectively the number with one, two hexagons joined to the base 

hexagon. Show that 

(a) 𝑠𝑛 + 𝑑𝑛 = ℎ𝑛(𝑛 ⩾ 2), 

(b) 𝑠𝑛+1 = 3ℎ𝑛, 

(c) 𝑑𝑛+1 = ℎ1ℎ𝑛−1 + ℎ2ℎ𝑛−2 + ⋯ + ℎ𝑛−1ℎ1. 

If ℎ(𝑥), 𝑠(𝑥), 𝑑(𝑥) are the respective generating functions, deduce that 

(d) ℎ(𝑥) = 𝑠(𝑥) + 𝑑(𝑥) + 𝑥, 

(e) 𝑠(𝑥) = 3𝑥ℎ(𝑥), 

(f) 𝑑(𝑥) = 𝑥{ℎ(𝑥)}2 

and that 

𝑥{ℎ(𝑥)}2 + (3𝑥 − 1)ℎ(𝑥) + 𝑥 = 0. 

7. Let 𝑞(𝑛) denote the number of partitions of 𝑛 into distinct parts. Thus 

𝑞(5) = 3, since 5 can be written as 5 or ( 4 + 1 ) or ( 3 + 2 ). Show that 

the generating function 𝑄(𝑥) is 

(1 + 𝑥)(1 + 𝑥2)(1 + 𝑥3)(1 + 𝑥4)⋯ 

8. Let 𝑟(𝑛) denote the number of partitions of 𝑛 into odd parts. Thus 𝑟(5) =

3 since 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1. Show that the generating 

function 𝑅(𝑥) is 

(1 − 𝑥)−1(1 − 𝑥3)−1(1 − 𝑥5)−1 ⋯ 

9. Prove the surprising result that, in the notation of the previous exercises, 

𝑞(𝑛) = 𝑟(𝑛) for every value of 𝑛. Do this, without finding what 𝑞(𝑛) or 
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𝑟(𝑛) is, by showing that the generating functions are the same. (Hint: in 

𝑄(𝑥) write 1 + 𝑥𝑟 as 
1−𝑥2𝑟

1−𝑥𝑟
 and see what happens.) 

10. Let 𝑓(𝑥) be the generating function for the sequence 𝑎1, 𝑎2, …. Find the 

sequence whose generating function is (1 − 𝑥)𝑓(𝑥). The answer should 

explain why ( 1 − 𝑥 ) is called the difference operator. 

11. The sequence {𝑎𝑛} is defined by 𝑎0 = 𝑒, 𝑎1 = 2𝑒, 

𝑛𝑎𝑛 = 2(𝑎𝑛−1 + 𝑎𝑛−2), (𝑛 ⩾ 2) 

          Show that the generating function 𝑓 satisfies the equation 

           𝑓′(𝑥) = 2(1 + 𝑥)𝑓(𝑥) and deduce that 𝑓(𝑥) = exp {(1 + 𝑥)2}. Hence    

           show that 

𝑎2𝑛 = ∑  

∞

𝑟=0

 
1

(𝑛 + 𝑟)!
(
2𝑛 + 2𝑟

2𝑛
) ,

𝑎2𝑛+1 = ∑  

∞

𝑟=0

 
1

(𝑛 + 𝑟 + 1)!
⋅ (

2𝑛 + 2𝑟 + 2

2𝑛 + 1
) .

 

12. Let 𝑎𝑛 denote the number of ways in which 𝑛 letters can be selected from 

the alphabet {0,1,2} with unlimited repetitions except that the letter 0 

must be selected an even number of times. Find 𝑎𝑛. How many 𝑛-letter 

sequences can be formed from this alphabet containing an even number 

of 0𝑠 ? 
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4.4. Miscellaneous methods 

The first recurrence relation mentioned in this book was 

𝑓(𝑛, 𝑘) = 𝑓(𝑛 − 1, 𝑘) + 𝑓(𝑛, 𝑘 − 1) (3.17) 

subject to the boundary conditions 

𝑓(1, 𝑘) = 1, 𝑓(𝑛, 1) = 𝑛 (3.18) 

This has certain similarities to the recurrence relation for binomial coefficients, 

(
𝑛

𝑘
) = (

𝑛 − 1

𝑘
) + (

𝑛 − 1

𝑘 − 1
) (3.19) 

subject to the boundary conditions 

(
𝑛

0
) = 1, (

𝑛

𝑛
) = 1 

No general method will be given for dealing with relations such as (3.17), but it 

will be shown how (3.17) can be solved by exploiting its similarity to the 

known relation (3.19). In (3.17) the 𝑘 terms behave as in (3.19), but the 𝑛 terms 

do not. Diagrammatically, the pattern is 

𝑛 𝑛 − 1 𝑛
𝑘 𝑘 𝑘 − 1

 

compared with the binomial coefficient pattern of 

𝑛 𝑛 − 1 𝑛 − 1
𝑘 𝑘 𝑘 − 1

 

How can (3.17) be fitted into the required shape? Suppose the new function 𝑔 is 

defined by 

𝑓(𝑛, 𝑘) = 𝑔(𝑛 + 𝑘, 𝑘). 

Then (3.17) becomes 

𝑔(𝑛 + 𝑘, 𝑘) = 𝑔(𝑛 + 𝑘 − 1, 𝑘) + 𝑔(𝑛 + 𝑘 − 1, 𝑘 − 1) (3.20) 

subject to the boundary conditions 

𝑔(1 + 𝑘, 𝑘) = 1, 𝑔(𝑛 + 1,1) = 𝑛 

Now (3.20) is familiar. For, with 𝑚 = 𝑛 + 𝑘, it is just 
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𝑔(𝑚, 𝑘) = 𝑔(𝑚 − 1, 𝑘) + 𝑔(𝑚 − 1, 𝑘 − 1) 

the recurrence relation for binomial coefficients. The boundary conditions, 

however, are not quite right. They would be, though, if the first variable were 

reduced by 1. So instead of putting 𝑚 = 𝑛 + 𝑘, try putting 𝑢 = 𝑛 + 𝑘 − 1, and 

defining the function ℎ by 

𝑓(𝑛, 𝑘) = ℎ(𝑛 + 𝑘 − 1, 𝑘) = ℎ(𝑢, 𝑘). 

(3.17) now becomes 

ℎ(𝑢, 𝑘) = ℎ(𝑢 − 1, 𝑘) + ℎ(𝑢 − 1, 𝑘 − 1) 

subject to 

ℎ(𝑘, 𝑘) = 1, ℎ(𝑛, 1) = 𝑛. 

It therefore follows that ℎ(𝑢, 𝑘) must be (𝑢
𝑘
) so that, finally, 

𝑓(𝑛, 𝑘) = (
𝑛 + 𝑘 − 1

𝑘
) 

Derangements 

It has already been shown that if 𝑎𝑛 denotes the number of derangements of 𝑛 

objects, then 𝑎𝑛 satisfies the recurrence relation 

𝑎𝑛 = (𝑛 − 1)𝑎𝑛−1 + (𝑛 − 1)𝑎𝑛−2 (3.21) 

This is not one of the relations covered by Theorem 4.1 since the coefficients of 

𝑎𝑛−1 and 𝑎𝑛−2 are not constants but depend on 𝑛. How can (4.21) be solved? 

One idea is to make a suitable substitution which will transform (4.21) into 

something more tractable. Define a new sequence {𝑏𝑛} by writing 

𝑎𝑛 = 𝑛! 𝑏𝑛 

(3.21) then becomes 

𝑛𝑏𝑛 = (𝑛 − 1)𝑏𝑛−1 + 𝑏𝑛−2 (𝑛 ⩾ 3) 

and the boundary conditions 𝑎1 = 0, 𝑎2 = 1, become 
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𝑏1 = 0, 𝑏2 =
1

2
. 

This new relation does not look much better than the original until it is observed 

that it can be written as 

𝑛(𝑏𝑛 − 𝑏𝑛−1) = −(𝑏𝑛−1 − 𝑏𝑛−2) 

which, on putting 𝑐𝑛 = 𝑏𝑛 − 𝑏𝑛−1, becomes 

𝑐𝑛 = −
1

𝑛
𝑐𝑛−1, 𝑐2 =

1

2
. 

This is easily dealt with, for clearly 

𝑐𝑛 =
(−1)𝑛

𝑛!
 (𝑛 ⩾ 2) 

So that 𝑏𝑛 = 𝑐𝑛 + 𝑏𝑛−1 

= 𝑐𝑛 + (𝑐𝑛−1 + 𝑏𝑛−2)= = 𝑐𝑛 + 𝑐𝑛−1 + 𝑏𝑛−2 

….. 

….. 

….. 

= 𝑐𝑛 + 𝑐𝑛−1 + ⋯ … + 𝑐2 + 𝑏1 

= ∑
(−1)𝑟

𝑟!

𝑛

𝑟=2

 

Thus  

𝑎𝑛 = 𝑛! ∑
(−1)𝑟

𝑟!

𝑛

𝑟=2

= 𝑛!∑
(−1)𝑟

𝑟!

𝑛

𝑟=0

 

𝑎𝑛 = 𝑛! {1 −
1

1!
+

1

2!
−

1

3!
+ ⋯… .+(−1)𝑛 1

n!
}   ………….(3.22) 

This formula for 𝑎𝑛 will be derived by another method when the inclusion- 

exclusion principle is introduced in the next chapter.  
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Exercises 4:  

1.Let 𝑎𝑛 denote the number of derangements of n objects. Deduce from (3.21) 

that a, =na,, + (— 1)", and hence derive (3.22) by con- a side ring 𝑏𝑛 =
𝑎𝑛

𝑛!
 Also 

verify that 𝑎4 = 9, 𝑎5 = 44, 𝑎6 = 265, 𝑎7 = 1854.  

2. As in Exercises 1.1, question 5, let g(n, k) denote the number of ways of 

placing k indistinguishable lions in n cages so that no cage contains more than 

one lion and no two lions are put in consecutive cages. It has been shown that 

g(n,k)=g(n-2,k-1)+g(n-1,k) Define a new function h by g(n, k) =h(p, k) where p 

=n — k + 1. Show that the recurrence relation and boundary conditions reduce 

to those —k+1 for binomial coefficients, and deduce that 𝑔(𝑛, 𝑘) = (𝑛−𝑘+1
𝑘

). 
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Unit IV                                 

The Inclusion-Exclusion Principles-Rook Polynomial. 

Chapter 4: Sections 4.1 - 4.2 

  

4.1. The Inclusion-Exclusion Principles: 

The principle three are in mathematics a handful of principles which look so 

simple as to be valueless, but yet in practice are of the utmost importance and 

power. One such principle is the box principle which asserts that if (n + 1) lions 

are put into 7 cages, then at least one cage must contain more than one lion. A 

course in number theory will show how powerful this simple principle is. The 

principle which is the subject of the present chapter is not much more difficult to 

understand. In-its simplest form it is concerned with the number of elements in 

the union of two sets A and B (see Fig. 4.1).  

 

Figure 4.1. 

 

Let |A | denote the number of elements in the set A. In evaluating |A U B|, consider 

first the possible answer |A| + |B]. This will in general be the wrong answer since 

those elements which are in both A and B are included twice, and therefore must 

be removed once. 

 Thus 
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 |A U B|=lAl+ |B|-|A∩ 𝐵|         ……..(4.1)  

Here the inclusion-exclusion principle is at work. First too many are included, but 

thereafter excluded.  

Example 4.1: 

 A = {1, 2, 3} and B= {2, 3, 4}. |A|=|B|=3, |A∩ 𝐵| = 2, so that |A UB|=3 +3 — 2 

=4. This is correct since A UB ={1,2,3,4}  

What happens with 3 sets A, B, C (see Fig. 4.2)? In evaluating |A UBUC|, start off 

with |A|+|B|+|C|. Any element in both A and B, or in both B and C, or in both C 

and A is included more than once. So the next attempt at a solution to consider is 

 

 

 

Figure 4.2. 

Not even this is correct, for if there are any elements in all three sets A, B,C, 

then they will have been included thrice and excluded thrice, and so must be 

added in once again. Thus 

|AUBUC|=|A|+|B|+|C|-|A∩B|-|B∩C|—|C∩A| +|A∩B∩C|    ……….(4.1) 

The reader will now be able to deduce from the patterns in (4.1) and (4.2) a 

similar expression for |AUBUCUD|. Indeed, 

|AUBUCUD|=|A|+|B|+|C|+|D|-|A∩B|-|B∩C|—|C∩ 𝐷| -|A∩ C| - |B∩ D| 

                         +|A∩B∩C|+|A∩B∩D|+|A∩C∩D|+|B∩C∩D|-|A∩B∩C∩D | 
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All these expressions illustrate the basic inclusion-exclusion principle, which is 

now presented in a slightly different way. Suppose that a collection of objects is 

given, along with a list of r properties which the objects may or may not possess, 

and suppose that it is required to find the number of objects which possess at least 

one of the properties. In the examples above, the first property was that of 

belonging to the set A, the second was that of belonging to B, and so on. Denote 

by N(i,j, . . ., k) the number of objects which possess each of the ith, jth, ..., kth 

properties (and possibly some others as well). Then the number of objects 

possessing at least one of the properties is 

N(1)+N(2)+N(3)+……+N(r) –{N(1,2)+N(1,3)+N(2,3)+……+N(r-1,r)}+ 

    {N(1,2,3)+N(1,2,4)+……..+N(r-2,r-1,r) }- 

                 ………+(−1)𝑟−1𝑁(1,2,… 𝑟)                           …..(4.3) 

This result is perhaps more useful in its complementary form. Instead of asking 

how many objects possess at least one of the properties, it is asked how many 

possess none of the properties. Clearly this is obtained by sub- tracting the 

expression (4.3) from the total number of objects. 

Proof of the principle (4.3). If an object possesses none of the 𝑟 properties, then 

it clearly contributes nothing to (4.3). If an object possesses 𝑡 ⩾ 1 properties, it 

must be shown that it contributes 1 to (4.3). But its contribution is 

𝑡 − (
𝑡

2
) + (

𝑡

3
) − (

𝑡

4
) + ⋯

 = 1 − {1 − 𝑡 + (
𝑡

2
) − (

𝑡

3
) + ⋯ }

 = 1 − (1 − 1)𝑡 = 1

 

Example 4.2: 

Derangements. The formula (4.22) for 𝑎𝑛, the number of derangements of 𝑛 

symbols, has the inclusion-exclusion look about it. Its appearance suggests that 

an alternative derivation is possible, and this is now confirmed. As objects, take 
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the 𝑛! possible permutations of the 𝑛 symbols. An object possesses the 𝑖 th 

property if the 𝑖 th symbol appears in it in the 𝑖 th place. Then the number of 

derangements is just the number of objects possessing none of the properties. 

Using the notation of (4.3), 

𝑁(𝑖) = (𝑛 − 1)! 

since the 𝑖 th symbol is fixed and the remaining ( 𝑛 − 1 ) can undergo any 

permutation. Similarly, 

𝑁(𝑖, 𝑗) = (𝑛 − 2)!, 

since two symbols are fixed, leaving 𝑛 − 2 to be permuted; 

𝑁(𝑖, 𝑗, 𝑘) = (𝑛 − 3)! 

and so on. Further, the number of terms of type 𝑁(𝑖) is (𝑛
1
), of type 

𝑁(𝑖, 𝑗) is (𝑛
2
), and so on. Thus, the number of permutations which satisfy at least 

one of the properties, i.e. which are not derangements, is 

(𝑛 − 1)! (
𝑛

1
) − (𝑛 − 2)! (

𝑛

2
) + (𝑛 − 3)! (

𝑛

3
) − ⋯ 

The number of derangements is 𝑛! minus this number, i.e. 

𝑛! −
(𝑛 − 1)! 𝑛!

(𝑛 − 1)! 1!
+

(𝑛 − 2)! 𝑛!

(𝑛 − 2)! 2!
−

(𝑛 − 3)! 𝑛!

(𝑛 − 3)! 3!
+ ⋯

 = 𝑛! {1 −
1

1!
+

1

2!
−

1

3!
+ ⋯+ (−1)𝑛

1

𝑛!
}

 

 

It so happens that it is profitable to consider this problem geometrically. Take an 

𝑛 × 𝑛 chessboard (see Fig. 4.3), and represent a permutation of the numbers 

1,2,… , 𝑛 by placing a chesspiece on the square of the 𝑖 th row and the 𝑗 th 

column if the number 𝑖 is permuted to the 𝑗 th position. For example, the 

permutation 2413 is represented by the accompanying diagram (where the top 

row is taken as the first row, and the left column as the first column). 
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Figure. 4.3 

Clearly a permutation corresponds to placing 𝑛 pieces on an 𝑛 × 𝑛 board so that 

no two pieces lie in the same row or column. For a derangement, no piece must 

lie on the main diagonal (i.e. the diagonal from the top left to the bottom right). 

Thus formula (3.22) can be interpreted as giving the number of ways of placing 

𝑛 rooks on an 𝑛 × 𝑛 chessboard, with none on the main diagonal, so that no rook 

can take any other rook. For, as is well known, a rook can only move along rows 

or columns. 

This idea will be returned to later, but meanwhile another interpretation of (3.22) 

is given. Suppose that in constructing an 𝑛 × 𝑛 Latin square the numbers 1,2,… , 𝑛 

have been placed in some order in the first row. Then (3.22) gives the number of 

ways of choosing a second row for the square. This raises the question: assuming 

that the first ( 𝑟 − 1 ) rows have been chosen, can anything be said about the 

number of choices for the 𝑟 th row? This is clearly closely related to the 

enumeration of permutations of 1, … , 𝑛 where there are ( 𝑟 − 1 ) forbidden places 

for each number. 
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Exercises 5.1 

1. Exam scripts of 𝑛 students are returned to the class at random, one to each 

student. Show that the probability that no student receives his own script 

tends to 1/𝑒 as 𝑛 → ∞. (Probability = number of ways this can happen 

divided by the total number of ways in which the scripts can be returned.) 

2. Each of a class of 50 students reads at least one of mathematics and 

physics. 30 read mathematics and 27 read both. How many read physics? 

3. How many integers from 1 to 1000 are divisible by none of 3,7,11 ? 

4. A survey carried out over a large number of citizens of a certain city 

revealed that 90 per cent of all people detest at least one of the pop stars 

Hairy, Dirty, and Screamer. 45 per cent detest Hairy, 28 per cent detest 

Dirty, and 46 per cent detest Screamer. If 27 per cent detest only 

Screamer, and 6 per cent detest all three, how many detest Hairy and 

Dirty but not Screamer? 

5. Present the permutation 35142 by a chessboard diagram. 

6. How many ways are there of placing 5 non-taking rooks on a 5 × 5 

board? How many ways if none lie on the main diagonal? How many if 

exactly one lies on the main diagonal? 

7. How many permutations are there of the digits 1,2, … ,8 in which none of 

the patterns 12,34,56,78 appears? 
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4.2. Rook polynomials: 

It has already been pointed out that the problem of derangements is equivalent to 

that of placing non-taking rooks on certain allowable squares of the chessboard. 

This suggests that some combinatorial problems may reduce to placing non-

taking rooks on boards of various shapes and sizes. 

Let 𝐶 be an arbitrary board of any shape, with 𝑚 squares. For each 𝑘 ⩽ 𝑚, let 

𝑟𝑘(𝐶) denote the number of ways of placing 𝑘 non-taking rooks on 𝐶. Then the 

generating function for the numbers 𝑟𝑘(𝐶), 

𝑅(𝑥, 𝐶) = 𝑟0(𝐶) + 𝑟1(𝐶)𝑥 + 𝑟2(𝐶)𝑥2 + ⋯ + 𝑟𝑚(𝐶)𝑥𝑚, 

is called the rook polynomial of the board 𝐶. 

Example 4.3:  

Find the rook polynomial for an ordinary 4 × 4 board. 

Solution:  

The numbers 𝑟𝑖(𝐶), 𝑖 = 0,… ,16 must be evaluated.  

Clearly 𝑟𝑖(𝐶) = 0 for all 𝑖 > 4. 

𝑟0(𝐶) = number of ways of placing no non-taking rooks on 𝐶,= 1 

(the only way being to leave the board empty). 

𝑟1(𝐶) = 16, since there are 16 squares to choose from. Next, 𝑟2(𝐶) is the 

number of ways of placing two non-taking rooks on 𝐶. These rooks must lie in 

different rows and columns. The number of ways of choosing two rows in (4
2
). 

Once the rows are chosen, a rook can be placed in the first one in any of 4 ways, 

and another rook in the second row in any of 3 places. 

Thus 

𝑟2(𝐶) = (
4

2
) ⋅ 4 ⋅ 3 = 72. Similarly  

𝑟3(𝐶) = (
4

3
) ⋅ 4 ⋅ 3 ⋅ 2 = 96, 𝑟4(𝐶) = (

4

4
) ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24. 
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Thus 

𝑅(𝑥, 𝐶) = 1 + 16𝑥 + 72𝑥2 + 96𝑥3 + 24𝑥4 

The reader should now try Exercises 4.2, question 1. 

Faced with a more awkwardly shaped board, the problem of finding the rook 

polynomial would prove to be near impossible if it were not that some tricks exist 

whereby a board can be reduced to a simpler one. One such trick is concerned 

with boards which fall into two or more noninterfering parts. Two parts 𝐴,𝐵 of a 

chessboard 𝐶 are non-interfering if no square in 𝐴 is in the same row or column 

of 𝐶 as any square of 𝐵. The board in Fig. 4.4 falls into 3 non-interfering parts. 

 

Figure. 4.4 

Property 1:  

If a chessboard 𝐶 consists of two non-interfering parts, then the rook polynomial 

for 𝐶 is just the product of the rook polynomials for the parts 𝐴 and 𝐵. 

Proof:  

When 𝑘 non-taking rooks are placed on 𝐶, 𝑡 will be placed on 𝐴 and ( 𝑘 − 𝑡 ) on 

𝐵, for some 𝑡, 0 ⩽ 𝑡 ⩽ 𝑘. Since the 𝑟𝑡(𝐴) possible placings of 𝑡 rooks on 𝐴 can 

each occur along with any of the 𝑟𝑘−𝑡(𝐵) placings on 𝐵 (for 𝐴 and 𝐵 do not 

interfere with one another), it follows that 

𝑟𝑘(𝐶) = 𝑟0(𝐴)𝑟𝑘(𝐵) + 𝑟1(𝐴)𝑟𝑘−1(𝐵) + ⋯ + 𝑟𝑘(𝐴)𝑟0(𝐵). 
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But the expression on the right is simply the coefficient of 𝑥𝑘 in 

{𝑟0(𝐴) + 𝑟1(𝐴)𝑥 + 𝑟2(𝐴)𝑥2 + ⋯ }{𝑟0(𝐵) + 𝑟1(𝐵)𝑥 + 𝑟2(𝐵)𝑥2 + ⋯ }, 

i.e. in the product of the rook polynomials for 𝐴 and 𝐵. 

Example 4.4: 

Suppose that 𝐶 consists of 𝑛 non-interfering 2 × 2 blocks (Fig. 4.5). 

 

Figure. 4.5 

The rook polynomial for one block is 1 + 4𝑥 + 2𝑥2. The rook polynomial for 𝐶 

is therefore (1 + 4𝑥 + 2𝑥2)𝑛. 

Property 1, although useful, is not widely applicable. The problem still remains 

of how to deal with a board which does not fall into noninterfering parts. The 

next property is of use here. 

Property 2:  

Given a chessboard 𝐶, choose any square of 𝐶 and let 𝐷 denote the board 

obtained by deleting from 𝐶 every square in the same row or column as the 

chosen square (including the chosen square itself). 

Let 𝐸 denote the board obtained from 𝐶 by deleting only the chosen square. 

Then 

𝑅(𝑥, 𝐶) = 𝑥𝑅(𝑥, 𝐷) + 𝑅(𝑥, 𝐸). 

Proof:  
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If 𝑘 ⩾ 1 non-taking rooks are placed on 𝐶, then the chosen square either is or is 

not used. If it is used, then ( 𝑘 − 1 ) rooks are left to be placed on 𝐷, and this 

can be done in 𝑟𝑘−1(𝐷) ways. If it is not used, then 𝑘 rooks have to be placed on 

𝐸, and this can be done in 𝑟𝑘(𝐸) ways. Thus 

𝑟𝑘(𝐶) = 𝑟𝑘−1(𝐷) + 𝑟𝑘(𝐸), 

so that 

𝑅(𝑥, 𝐶) = ∑  

∞

𝑘=0

  𝑟𝑘(𝐶)𝑥𝑘

 = ∑  

∞

𝑘=1

  𝑟𝑘−1(𝐷)𝑥𝑘 + ∑  

∞

𝑘=0

  𝑟𝑘(𝐸)𝑥𝑘

 = 𝑥𝑅(𝑥, 𝐷) + 𝑅(𝑥, 𝐸)

 

By repeated applications of Property 2, the rook polynomial of any board can be 

found. 

Example 4.5: 

Find the rook polynomial of the board of Fig. 4.6. 

 

Figure. 4.6 

Solution: 

Choosing the centre square, 

𝑅(𝑥, 𝐶) = 𝑥𝑅(𝑥,𝐷) + 𝑅(𝑥, 𝐸),… … . . (4.4)
 

where 
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𝐷 =◻◻  and 𝐸 =◻◻= 

Now, 

𝑅(𝑥,𝐷) = 1 + 2𝑥 (4.5) 

and, by Property 1, 

𝑅(𝑥, 𝐸) = 𝑅(𝑥, 𝐻)𝑅(𝑥, 𝐾) 

where 

𝐻 =◻◻   and  𝐾 =◻ 

Since 𝑅(𝑥, 𝐻) = 1 + 4𝑥 + 2𝑥2 and 𝑅(𝑥, 𝐾) = 1 + 𝑥, it follows that 

𝑅(𝑥, 𝐸) = (1 + 𝑥)(1 + 4𝑥 + 2𝑥2) (4.6) 

From (4.4)-(.6) it now follows that 

𝑅(𝑥, 𝐶) = 𝑥(1 + 2𝑥) + (1 + 𝑥)(1 + 4𝑥 + 2𝑥2)

 = 1 + 6𝑥 + 8𝑥2 + 2𝑥3
 

This whole argument can be written more clearly in the following symbolic 

way: 

𝑅(𝑥, 𝐶) = 𝑥𝑅(◻◻) + 𝑅(◻◻)

 = 𝑥(1 + 2𝑥) + 𝑅(◻◻)𝑅(◻)

 = 𝑥(1 + 2𝑥) + (1 + 4𝑥 + 2𝑥2)(1 + 𝑥)

 

This abbreviated notation is used in the next example. 

Example 5.6. 𝑅(◻◻) = 𝑥𝑅(◻) + 𝑅(◻◻) 

 = 𝑥(1 + 𝑥) + 𝑥𝑅 (
◻

◻
) + 𝑅 (

◻

◻
)

 = 𝑥(1 + 𝑥) + 𝑥(1 + 2𝑥) + 𝑅 (
◻

◻
)𝑅(◻)

 = 𝑥(2 + 3𝑥) + (1 + 3𝑥 + 𝑥2)(1 + 𝑥)

 = 1 + 6𝑥 + 7𝑥2 + 𝑥3
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Applications of rook polynomials 

Example 5.7:  

The manager of a firm has 5 employees to be assigned to 5 different jobs. The 

men are 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and the jobs are 𝑎, 𝑏, 𝑐, 𝑑, 𝑒. He considers that 𝐴 is unsuited 

for jobs 𝑏 and 𝑐, 𝐵 unsuited for 𝑎 and 𝑐, 𝐶 unsuited for 𝑏, 𝑑 and 𝑒, 𝐷 suited for all 

and 𝐸 unsuited for 𝑑. In how many ways can he assign the jobs to men suited to 

them? 

Solution:  

The board shown in Fig. 5.7 represents the situation. The problem is to find the 

coefficient of 𝑥5 in the rook polynomial for this board. At this point the reader 

will probably hold back at the mere thought of finding the rook polynomial, due 

to the amount of work 

 

Figure. 4.7 

involved. In fact, it would be much easier to find the rook polynomial for the 

board consisting of the forbidden positions. This polynomial will now be found 

before its usefulness to the original problem is explained. 
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= 𝑥{𝑥𝑅(◻) + 𝑅(◻)} + 𝑅(◻)𝑅(◻

= 𝑥{𝑥(1 + 𝑥) + 1 + 3𝑥 + 2𝑥2} + (1 + 𝑥){𝑥𝑅(◻◻)

 +𝑅(◻◻)}

= 𝑥(1 + 4𝑥 + 3𝑥2) + (1 + 𝑥){𝑥(1 + 3𝑥 + 𝑥2) +

 +(1 + 𝑥)𝑅(◻◻)}

= (𝑥 + 4𝑥2 + 3𝑥3) + (1 + 𝑥){𝑥 + 3𝑥2 + 𝑥3 +

+(1 + 𝑥)(1 + 4𝑥 + 3𝑥2)}

=1 + 8𝑥 + 20𝑥2 + 17𝑥3 + 4𝑥4.(4.7)

 

This is the rook polynomial for the board consisting of the forbidden squares. 

Now the assignment of jobs to men can be considered as permutations of the 

numbers 1,… ,5. For example, if 𝐴 gets job 𝑐, 𝐵 gets 

𝑑, 𝐶 gets 𝑏,𝐷 gets 𝑎, and 𝐸 gets 𝑒, the assignment corresponds to the 

permutation 34215, since, for example, the first man gets the third job and the 

fourth man gets the first job. The key to the problem now lies in the following 

theorem. 

Theorem 4.1: 

 The number of permutations of 𝑛 symbols in which no symbol is in a forbidden 

position is 

∑  

𝑛

𝑘=0

(−1)𝑘(𝑛 − 𝑘)! 𝑟𝑘 

where 𝑟𝑘 is the number of ways of placing 𝑘 non-taking rooks on the board of 

forbidden positions. 
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Solution to Example 4.7 (continued). Assuming for the moment that the 

theorem has been proved, and noting that, from (4.7), 

𝑟0 = 1, 𝑟1 = 8, 𝑟2 = 20, 𝑟3 = 17, 𝑟4 = 4, 

and 𝑛 = 5, the number of ways of assigning the jobs to the men is 

5! − 4! 8 + 3! 20 − 2! 17 + 4 = 18 

Thus, 

 a knowledge of the rook polynomial for the board of forbidden squares leads 

very quickly to information about the permitted squares. 

Proof of Theorem 5.1. In the notation of the inclusion-exclusion principle, 

suppose that a permutation possesses the 𝑖 th property if the 𝑖 th symbol is in a 

forbidden position. Then the number of permutations with no symbol in a 

forbidden position is 

𝑛! − {𝑁(1) + ⋯ + 𝑁(𝑛)} + {𝑁(1,2) + ⋯ } − ⋯ 

Now each 𝑁(𝑖) is equal to 𝑠𝑖(𝑛 − 1) ! where 𝑠𝑖 is the number of forbidden 

squares in the 𝑖 th row, since the 𝑖 th symbol can be placed on any of these 𝑠𝑖 

squares and the remaining symbols can be placed in (𝑛 − 1) ! ways. Since 𝑠1 +

⋯ + 𝑠𝑛 = 𝑟1, it follows that 

𝑁(1) + ⋯+ 𝑁(𝑛) = (𝑛 − 1)! (𝑠1 + ⋯ + 𝑠𝑛) = (𝑛 − 1)! 𝑟1. 

Similarly, 

𝑁(1,2) + 𝑁(1,3) + ⋯+ 𝑁(𝑛 − 1, 𝑛) = (𝑛 − 2)! 𝑟2 

and so on. 

Example 4.8: 

 In constructing a 6 × 6 Latin square, the first two rows have been chosen as 

follows: 
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1 2 3 4 5 6 

2 4 1 3 6 5. 

 

By Hall's theorem (2.3) it is definitely possible to find a suitable third row. But 

how many possibilities are there? 

Solution:  

The problem is: how many permutations of 1,… ,6 are there with no symbol in a 

forbidden position, the forbidden positions being represented by crosses in the 

diagram (Fig. 4.8)? 

 

Figure. 4.8 

Following the method of the previous example, the first thing to do is to obtain 

the rook polynomial for the board of forbidden positions. This is 

𝑅(◻◻)𝑅(◻) = (2𝑥4 + 16𝑥3 + 20𝑥2 + 8𝑥 + 1)(1 + 4𝑥 + 2𝑥2)

=(4𝑥6 + 40𝑥5 + 106𝑥4 + 112𝑥3 + 54𝑥2 + 12𝑥 + 1)
 

In the notation of Theorem 4.1, 𝑟6 = 4, 𝑟5 = 40, 𝑟4 = 106, 𝑟3 = 112, 𝑟2 =

54, 𝑟1 = 12, and 𝑟0 = 1, so that the number of possibilities for the third row of 

the square is 

6! − 12.5! + 54.4! − 112.3! + 106.2! − 40 + 4 = 70. 
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Exercises 5.2 

1. Find the rook polynomial for an ordinary 8 × 8 chessboard. 

2. A six-a-side football team is to consist bf the players 1? A,B,...,F. A 

refuses to play in positions 1 or 2, B in position 4, C in positions 1 or 5, D 

in 2, — in 4, and F in 4 or 6. How many ways are there of assigning 

agreeable positions to the six players?  

3. The first two rows of a 5 x 5 Latin square are 1, 2, 3, 4, 5 and 2, 3, 4,5, 1. 

In how many ways can a third row be chosen? 

4. Find the rook polynomials for the following boards: 

 

5. A computer matching service has five male subscribers A, B,C, D, E and 

four female subscribers a, b, c,d. After analysing their interests and 

personalities, the computer decides that a is unsuitable for B and C, 6 

unsuitable for C, c forA and £, d for B. In how many ways can the female 

subscribers be matched?  

6. By trial and error, verify that there are four possible third rows for a Latin 

square whose first two rows are 1, 2, 3, 4 and 2, 1, 4, 3, whereas there are 

only two possibilities if the first two rows are 1, 2, 3, 4 and 2, 4, 1, 3. 

Thus, although the number of choices for the next row is always => 1, the 

actual number of choices depends on the choice of the previous rows. 

7.  In the light of question 8, repeat question 4 if the second row is 

2,3,1,5,4. 
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Unit V 

Block designs - square block designs. 

Chapter 5: Sections   5.1, 5.2 

 

6.1. Block designs  

The origins of the theory of block designs can be traced back to the problem of 

designing certain types of statistical experiment. It is therefore not insignificant 

that the name of the distinguished statistician Fisher is attached to one of the first 

results in the subject (Theorem 5 

.2). The idea behind a block design can be seen in the following type of problem. 

Suppose that a number of brands of instant coffee are to be tested among a number 

of housewives, the object of the experiment being to let the ladies compare the 

different brands and decide on their relative merits. To make the tests as fair as 

possible, it is decided that the following conditions should be satisfied: (1) each 

housewife should taste the same number of brands; (2) each pair of brands should 

be compared by the same number of housewives. % Clearly, one way of achieving 

this would be to give every housewife every brand of coffee, but this is wasteful 

and time consuming. The problem is to achieve the aim more economically. 

Mathematically, all that is involved is a set S of varieties (the brands of coffee), 

and a collection of subsets of S (each subset consisting of those varieties which a 

particular housewife tastes) called blocks, with the properties: (a) each block has 

the same number of elements; (b) every pair of varieties is contained in the same 

number of blocks. 

 Definition 5.1.  

A block design is a family of b subsets of a set S of v elements such that, for some 

fixed k and A, with k < 0, (1) each subset has k elements, (2) each pair of elements 
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of S occur together in exactly \ subsets. The elements of S are called the varieties, 

and the subsets of S are called the blocks. 

 Example 6.1. Take S = {1, 2, ..., 7}, and consider the following seven subsets of 

S: {1,2,4}, {2,3,5}, {3,4,6}, {4,5,7}, {5,6,1}, {6,7,2}, {7,1,3}.Here b=7,v=7,k=3, 

𝜆 = 1.To see that 𝜆 = 1, consider any pair of elements, say 4 and 6, and verify 

that exactly one of the seven subsets contains both 4 and 6. Do this for each pair. 

This design could be used to compare 7 brands of coffee, using seven 

housewives. Each housewife is given 3 brands, and any particular pair of brands 

will be compared by exactly one housewife. 

There is a simple geometrical representation of the above design. The 

elements 1, … ,7 are represented by points, and the blocks are represented by lines 

(all but one being a straight line). This is the simplest example of a finite 

projective plane, where the elements are usually called points and the blocks are 

called lines. This one is known as the seven-point plane 

(Fig 5.1). It is the simplest example of a Steiner triple system;  

 

Figure. 5.1. The seven-point plane. 

But there is another useful way of representing the design of Example 5.1. The 

first set {1,2,4} can be represented by the following string of 0s and 1 s: 

1101000. 
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There is a 1 in the first, second, and fourth places because the set consists of the 

first, second, and fourth elements. Similarly, {2,3,5} can be represented by 

0110100. 

Representing each set in this way, and listing the strings one under the other, the 

following matrix, called the incidence matrix of the design, is formed 

[
 
 
 
 
 
 
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1]

 
 
 
 
 
 

 

Each row represents a subset or block, and each column gives information about 

a particular element or variety. For example, by looking at the third column it is 

deduced that the element 3 occurs in the second, third, and seventh sets. The 

condition that any pair of elements occur together in exactly one block is 

represented by the property that any two columns both have 1s in the same row 

exactly once. For example, the first and seventh columns both have a 1 in the 

seventh row; this means that the elements 1 and 7 occur together only in the 

seventh set. 

The advantage of using incidence matrices to describe a block design instead of 

listing the sets element by element is that the structure of the design is seen more 

clearly without any irrelevant information such as the names of the elements 

confusing the issue. It is also easier to scan the columns to find how many sets 

contain a given element than to look through a list of sets. Note also that the 

number of rows is 𝑏, and the number of columns is 𝑣. 

The conditions for a block design imply a further condition, namely that each 

variety must occur in the same number of blocks. The proof of this acts as an 
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introduction to simple but important counting ideas ◻ which will be much used 

in the next chapter. 

Theorem 5.1: 

In a block design each element lies in exactly 𝑟 blocks, where 

𝑟(𝑘 − 1) = 𝜆(𝑣 − 1)  and  𝑏𝑘 = 𝑣𝑟. (5.1) 

Proof:  

Concentrate on any one of the elements, and suppose that it occurs in 𝑟 blocks, 

for some 𝑟. Each of these 𝑟 blocks contain ( 𝑘 − 1 ) other elements, so that the 

number of pairs including this chosen element is 𝑟(𝑘 − 1). But there are                     

( 𝑣 − 1 ) elements with which it can be paired, and each pair occurs 𝜆 times. 

Hence 𝑟(𝑘 − 1) = 𝜆(𝑣 − 1). Since 𝑘, 𝑣, and 𝜆 are fixed, it follows that 𝑟 must be 

the same for each element. For this fixed value of 𝑟, each element therefore has 

𝑟 appearances in the blocks, so that there are 𝑣𝑟 appearances of elements 

altogether. But there are 𝑏 blocks each with 𝑘 elements, so the number of 

appearances must also be 𝑏𝑘. Thus 𝑏𝑘 = 𝑟𝑣. 

The five parameters 𝑏, 𝑣, 𝑟, 𝑘, 𝜆 of a block design are therefore not independent, 

but have two restrictions as stated in the theorem. Often a block design is referred 

to as a ( 𝑏, 𝑣, 𝑟, 𝑘, 𝜆 )-configuration;  

for example, the seven-point plane is a (7,7,3,3,1)-configuration. Whatever 

𝑏, 𝑣, 𝑟, 𝑘, 𝜆 are, they must satisfy (5.1), but conversely, if five numbers 𝑏, 𝑣, 𝑟, 𝑘, 𝜆 

satisfy (5.1), there is no guarantee that a ( 𝑏, 𝑣, 𝑟, 𝑘, 𝜆 )-configuration 

exists. For example, it is known that a finite projective plane with 𝑏 = 𝑣 =

43, 𝑟 = 𝑘 = 7, and 𝜆 = 1 does not exist (see Theorem 5.4). 

The seven-point plane has a further property which is not possessed by all block 

designs, namely that 𝑏 = 𝑣. This means that the number of blocks is the same as 

the number of elements, so that the incidence matrix is a square matrix. Such 
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designs are called square or symmetric designs although the second description 

is misleading since the incidence matrix need not be symmetric about the main 

diagonal. The reason for the name will appear later. Since 𝑏 = 𝑣 implies 𝑟 = 𝑘, 

square designs are completely determined by the three parameters 𝑣, 𝑘, 𝜆 and 

hence are often called ( 𝑣, 𝑘, 𝜆 )-configurations. The seven-point plane is a ( 

7,3,1 )-configuration. Condition (6.1) becomes 

𝑘(𝑘 − 1) = 𝜆(𝑣 − 1) (5.2) 

Equality of 𝑏 and 𝑣 is in a sense the extreme case since 𝑏 can never be smaller 

than 𝑣 in a block design. This is Fisher's result, proved in 1940. 

Theorem 5.2 (Fisher). For 𝑎(𝑏, 𝑣, 𝑟, 𝑘, 𝜆)-configuration, 

𝑏 ⩾ 𝑣. 

Proof: 

Let 𝐴 be the incidence matrix, so that 𝐴 has 𝑏 rows and 𝑣 columns. The key idea 

in the proof is to determine the matrix 𝐶 = 𝐴′𝐴. Here 𝐴′ is the transposed matrix 

of 𝐴, obtained by writing the rows of 𝐴 as columns, and the columns as rows. The 

element 𝑎𝑖𝑗
′  in the 𝑖 th row and 𝑗 th column of 𝐴′ is equal to 𝑎𝑗𝑖, the element in 

the 𝑗 th row and the 𝑖 th column of 𝐴. Then 𝐶 = (𝑐𝑖𝑗)𝑣×𝑣
,  

where 

𝑐𝑖𝑗 = ∑  

ℎ

  𝑎𝑖ℎ
′ 𝑎ℎ𝑗

 = ∑  

ℎ

  𝑎ℎ𝑖𝑎ℎ𝑗 .
 

In particular, 

𝑐𝑖𝑖 = ∑  

ℎ

𝑎ℎ𝑖
2 = ∑  

ℎ

𝑎ℎ𝑖 
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since each 𝑎𝑖𝑗 is 0 or 1 and 02 = 0 and 12 = 1. But 𝑎ℎ𝑖 = 1 if and only if the 𝑖 

th element is in the ℎ th set, and is 0 otherwise. Thus 

𝑐𝑖𝑖 = ∑  

ℎ

  𝑎ℎ𝑖 =  number of sets containing the 𝑖 th element 

 = 𝑟.

 

Also, if 𝑖 ≠ 𝑗, 

𝑐𝑖𝑗 = ∑  

ℎ

𝑎ℎ𝑖𝑎ℎ𝑗 . 

Now 𝑎ℎ𝑖𝑎ℎ𝑗 is equal to 1 if and only if 𝑎ℎ𝑖 = 𝑎ℎ𝑗 = 1, i.e. only if the ℎ th set 

contains both the 𝑖 th and the 𝑗 th elements. There are 𝜆 such ℎ s. Thus 𝑐𝑖𝑗 = 𝜆, 

and 

𝐶 = 𝐴′𝐴 = [

𝑟 𝜆 𝜆 … 𝜆
𝜆 𝑟 𝜆 … 𝜆
⋮ ⋮
𝜆 𝜆 𝜆 … 𝑟

] .  

If 𝐼 is used to denote the unit matrix with 1 s down the main diagonal and 0 s 

elsewhere, and 𝐽 denotes the matrix with every entry equal to 1 , this result can 

be written as 

𝐴′𝐴 = (𝑟 − 𝜆)𝐼 + 𝜆𝐽. (5.3) 

Exercise for the reader. If 𝐽 is 𝑣 × 𝑣, then 𝐽2 = 𝑣𝐽. 

To prove that 𝑏 ⩾ 𝑣, note first that, if 𝜌(𝐶) denotes the rank of the matrix 𝐶, 

𝜌(𝐶) = 𝜌(𝐴′𝐴) ⩽ 𝜌(𝐴) ⩽ 𝑏. (5.4) 

Use is being made here of the facts that 𝜌(𝑋𝑌) ⩽ 𝜌(𝑌) for all matrices 𝑋, 𝑌, and 

the rank of a matrix is no greater than the number of its rows or columns. 

However, 
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det [

𝑟 𝜆 𝜆 … 𝜆
𝜆 𝑟 𝜆 … 𝜆
⋮
𝜆 𝜆 𝜆 … 𝑟

] = det

[
 
 
 
 

𝑟 𝜆 𝜆 … 𝜆
𝜆 − 𝑟 𝑟 − 𝜆 0 … 0
𝜆 − 𝑟 0 𝑟 − 𝜆 … 0

⋮
𝜆 − 𝑟 0 0 … 𝑟 − 𝜆]

 
 
 
 

 

on substracting the first row from each of the others, and this, in turn, on adding 

to the first column all the other columns, is equal to 

det

[
 
 
 
 
𝑟 + 𝜆(𝑣 − 1) 𝜆 𝜆 … 𝜆

0 𝑟 − 𝜆 0 … 0
0 0 𝑟 − 𝜆 … 0
⋮
0 0 0 … 𝑟 − 𝜆]

 
 
 
 

 = {𝑟 + (𝑣 − 1)𝜆} ⋅ (𝑟 − 𝜆)𝑣−1

 = 𝑟𝑘(𝑟 − 𝜆)𝑣−1

 ≠ 0,  since (5.1) implies that 𝑟 > 𝜆

 

Thus 𝐶 is a nonsingular 𝑣 × 𝑣 matrix, and so 𝜌(𝐶) = 𝑣. Thus (6.4) gives 𝑏 ⩾ 𝑣 

as required. 

Exercises 1: 

1.The following 12 sets form a ( 𝑏, 𝑣, 𝑟, 𝑘, 𝜆 )-configuration. 

{1,2,3} {4,5,6} {7,8,9} {1,4,7}
{2,5,8} {3,6,9} {1,5,9} {2,6,7}

{3,4,8} {1,6,8} {2,4,9} {3,5,7}
 

Write down the incidence matrix and check that 𝑏 = 12, 𝑣 = 9, 𝑟 = 4, 𝑘 =

3, 𝜆 = 1. Verify that 𝑏𝑘 = 𝑟𝑣 and 𝑟(𝑘 − 1) = 𝜆(𝑣 − 1). Explain how this 

design could be used to test 9 detergents with the help of 12 housewives, or with 

the help of 3 housewives on 4 consecutive days. 

2. Find 𝐴′𝐴 and 𝐴𝐴′ for the seven-point plane. 

3. Show that there exists no (12,8,3,2,1)-configuration. 

4. Define the complement of a design 𝐷 to be the design obtained by changing 0 

to 1 and 1 to 0 throughout the incidence matrix of 𝐷. If 𝐷 is a ( 𝑏, 𝑣, 𝑟, 𝑘, 𝜆 )-
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configuration, show that its complement is a ( 𝑏, 𝑣, 𝑏 − 𝑟, 𝑣 − 𝑘, 𝑏 − 2𝑟 + 𝜆 )-

configuration. 

5. Derive from question 1 above a ( 12,9,8,6,5 )-configuration. 

6. Show that no block design exists with (a) 𝑣 = 16, 𝑘 = 6, 𝜆 = 1, (b) 𝑣 =

21, 𝑘 = 6, 𝜆 = 1, (c) 𝑣 = 25, 𝑘 = 10, 𝜆 = 3, although in each case (6.1) is 

satisfied. 

7. Show that there is essentially only one ( 7,7,3,3,1 ) design, as follows. 

Assume that the elements are 1,2,… ,7; by relabelling if necessary assume that 

{1,2,4}, {2,3,5) and {1,5,6} are blocks: show that the remaining blocks are 

uniquely determined. 

8. One of the first block designs to appear explicitly in the statistical literature 

was the following, due to Yates [29] in 1936. 

 {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑒}, {𝑎, 𝑑, 𝑓}, {𝑎, 𝑒, 𝑓}, {𝑏, 𝑐, 𝑓}

 {𝑏, 𝑑, 𝑒}, {𝑏, 𝑒, 𝑓}, {𝑐, 𝑑, 𝑒}, {𝑐, 𝑑, 𝑓}
 

Verify that this is a (10,6,5,3,2) design. It could be used in an agricultural 

experiment where a research lab has 10 blocks each with 3 plots, and where there 

are 6 varieties of wheat, 3 in each block, arranged so that any two varieties can 

be compared twice due to their occurring twice in the same block. 

9. One of the problems which stimulated interest in block designs in the 

nineteenth century was Kirkman's schoolgirls problem. The problem was to 

arrange 15 schoolgirls in 5 groups of 3 on each of the 7 days of a week in such a 

way that during the week each pair of girls would walk together exactly once. 

What was wanted was a (35, 15, 7, 3, 1) design which is resolvable, i.e. such that 

the blocks can be grouped into 𝑟 = 7 groups of 5 blocks so that each element 

occurs precisely once in each group. Let the 15 girls be labelled 

𝑋1, … , 𝑋7 , 𝑌1, … , 𝑌7, 𝑍. Verify that the following is a solution to the problem; it has 



 

79 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  
 

 

the nice property that the triples for each day can be obtained from those of the 

previous day by replacing 𝑋𝑖  by 𝑋𝑖+1, 𝑌𝑖  by 𝑌𝑖+1(𝑖 ⩽ 6), 𝑋7 by 𝑋1 , 𝑌7 by 𝑌1. 

Day1:𝑋1𝑌1𝑍 𝑋2𝑋6𝑌4 𝑋3𝑋4𝑌7 𝑋5𝑋7𝑌6 𝑌2𝑌3𝑌5 

Day 2: 𝑋2𝑌2𝑍 𝑋3𝑋7𝑌5 𝑋4𝑋5𝑌1 𝑋6𝑋1𝑌7 𝑌3𝑌4𝑌6 

……… 

Day 7: 𝑋7𝑌7𝑍 𝑋1𝑋5𝑌3 𝑋2𝑋3𝑌6 𝑋4𝑋6𝑌5 𝑌1𝑌2𝑌4. 

5.2. Square block designs: 

In the special case of a square design, (6.3) becomes 

𝐴′𝐴 = (𝑘 − 𝜆)𝐼 + 𝜆𝐽 = [

𝑘 𝜆 𝜆 … 𝜆
𝜆 𝑘 𝜆 … 𝜆
⋮ ⋮
𝜆 𝜆 𝜆 … 𝑘

] . (5.5) 

As has been pointed out already, the incidence matrix 𝐴 of a (𝑣, 𝑘, 𝜆) 

configuration need not itself be symmetric. The reason for calling a square 

block design symmetric is that there is the following symmetry in the properties 

of the rows and columns of the incidence matrix: 

(1) Any row contains 𝑘 1s. 

(2) Any column contains 𝑘 1s. 

(3) Any pair of columns both have 1 s in exactly 𝜆 rows. 

(4) Any pair of rows both have 1 s in exactly 𝜆 columns. 

Property (4) has not yet been proved, but it will be shown to follow from (1), (2) 

and (3). Note that property (4) says: in a symmetric (𝑣, 𝑘, 𝜆) configuration each 

pair of blocks interesect in exactly 𝜆 elements. 

Properties (2) and (3) are contained in (in fact are equivalent to) the statement 

(6.5), whereas (1) and (4) can together be expressed as 

𝐴𝐴′ = (𝑘 − 𝜆)𝐼 + 𝜆𝐽 (5.6) 
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It will be shown that (2) and (3) together imply (1) and (4), and, conversely, (1) 

and (4) together will imply (2) and (3). Once this has been established, it will 

follow that 𝐴 is the incidence matrix of a ( 𝑣, 𝑘, 𝜆 )-configuration if 𝐴 satisfies 

either (5.5) or (5.6). 

Theorem 5.3: 

If 𝐴 is a square (0,1) matrix (i.e. a matrix all of whose entries are 0 or 1) and if 

𝐴 satisfies (5.5) with 𝑘 > 𝜆, then (5.6) also holds. 

Proof: 

Since the diagonal elements of 𝐴′𝐴 are all 𝑘, each column of 𝐴 contains exactly 

𝑘 1s. Thus 

𝐽𝐴 = 𝑘𝐽 

and, on transposing, 

𝐴′𝐽 = 𝑘𝐽 

Now 

(𝐴′ − √(
𝜆

𝑣
) 𝐽) (𝐴 + √(

𝜆

𝑣
) 𝐽)  = 𝐴′𝐴 + √(

𝜆

𝑣
) (𝐴′𝐽 − 𝐽𝐴) −

𝜆

𝑣
𝐽2

 = 𝐴′𝐴 + √(
𝜆

𝑣
) (𝑘𝐽 − 𝑘𝐽) −

𝜆

𝑣
𝐽2

 = 𝐴′𝐴 − 𝜆𝐽

 = (𝑘 − 𝜆)𝐼 + 𝜆𝐽 − 𝜆𝐽

 = (𝑘 − 𝜆)𝐼.………(5.7)

 

Now if two square matrices 𝑀,𝑁 are such that 𝑀𝑁 = 𝛼𝐼 for some 𝛼 ≠ 0, it 

follows that 
1

𝛼
𝑀 and 𝑁 are inverses of one another and hence commute. Thus 

𝑁𝑀 = 𝛼𝐼. It now follows from (6.7) that 
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(𝐴 + √(
𝜆

𝑣
) 𝐽) (𝐴′ − √(

𝜆

𝑣
) 𝐽) = (𝑘 − 𝜆)𝐼 

i.e. 

𝐴𝐴′ + √(
𝜆

𝑣
) (𝐽𝐴′ − 𝐴𝐽) −

𝜆

𝑣
𝐽2 = (𝑘 − 𝜆)𝐼 

i.e. 

𝐴𝐴′ − (𝑘 − 𝜆)𝐼 − 𝜆𝐽 = √(
𝜆

𝑣
) (𝐴𝐽 − 𝐽𝐴′) 

Denote the left-hand side by 𝐻, and the right-hand side by 𝐾, and note that the 

matrix 𝐻 is symmetric ( 𝐻′ = 𝐻 ) whereas 𝐾 is skew symmetric ( 𝐾′ = −𝐾 ). 

Since 𝐻 = 𝐾, it follows that 𝐻 = 𝐻′ = 𝐾′ = −𝐾 = −𝐻, so that 𝐻 = 0. Thus 

finally 

𝐴𝐴′ − (𝑘 − 𝜆)𝐼 − 𝜆𝐽 = 0 

i.e. 

𝐴𝐴′ = (𝑘 − 𝜆)𝐼 + 𝜆𝐽 

as required. 

This proof is due to I. S. Murphy [22]. 

Example 5.2: 

A finite projective plane of order 𝑛 is defined to be a (𝑣, 𝑘, 𝜆)-configuration for 

which 𝑣 = 𝑛2 + 𝑛 + 1, 𝑘 = 𝑛 + 1, and 𝜆 = 1, for some positive integer 𝑛 ⩾ 2. 

The seven-point plane corresponds to 𝑛 = 2. In a plane of order 𝑛 there are 

therefore ( 𝑛2 + 𝑛 + 1 ) points and ( 𝑛2 + 𝑛 + 1 ) lines, and the four properties 

listed on p. 83 become as follows. 

(1) Any line contains ( 𝑛 + 1 ) points. 

(2) Any point lies on (𝑛 + 1) lines. 
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(3) Any pair of points are joined oy exactly one line. 

(4) Any pair of lines intersect in exactly one point. 

These four properties can be checked for 𝑛 = 2 by studying Fig. 5.1. The next 

plane, corresponding to 𝑛 = 3, is a thirteen-point plane with 4 points on each 

line and 4 lines through each point. See the Exercises 5.4 for its construction. 

The major unsolved problem for finite projective planes is to find all those 

values of 𝑛 for which a plane of order 𝑛 exists. The following statements sum 

up the state of present knowledge. 

(a) A plane of order 𝑛 definitely exists if 𝑛 ⩾ 2 is a prime or a power of a prime. 

(b) No plane of any other order is known to exist. 

(c) There is definitely no plane of order 6 , or in general of any order 𝑛, where 𝑛 

is of the form ( 4𝑘 + 1 ) or ( 4𝑘 + 2 ), and is divisible an odd number of times 

by a prime of the form ( 4ℎ + 3 ). 

The smallest values of 𝑛 which are excluded by (c) are 𝑛 = 6,14,22. The 

smallest number not covered by (a) and (c) is 10, and it is still not known 

whether or not a plane of order 10 exists: 

Unsolved problem: Is it possible to construct a square (0,1)-matrix 𝐴 with 111 

rows and 111 columns, each row and column containing exactly eleven 1s, such 

that 

𝐴𝐴′ = 10𝐼 + 𝐽. 

The statement (c) above is due to two North American mathematicians Bruck and 

Ryser. Their proof is a delightful example of the ingenuity and cunning which 

abound in this branch of mathematics. The proof is accessible to anyone who has 

done a little matrix algebra, and is now presented in the simplest case of 𝑛 = 6. 
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Theorem 5.4. 

There is no finite projective plane of order 6. It will be convenient to note a few 

preliminary results before embarking on the proof of the theorem. In what 

follows, 𝐼𝑛 will denote the 𝑛 × 𝑛 unit matrix. 

Lemma 1. If 𝐻 is the 4 × 4 matrix defined by 

𝐻 = [

2 1 1 0
1 −2 0 −1
1 0 −2 1
0 1 −1 −2

] 

then 𝐻𝐻′ = 6𝐼4. 

Lemma 2.  

There are no integers 𝑎, 𝑏, 𝑐 such that 𝑎2 + 𝑏2 = 6𝑐2,  

apart from 𝑎 = 𝑏 = 𝑐 = 0. 

Proof of Lemma 2.  

Suppose such integers do exist. If 𝑎, 𝑏, 𝑐 have a common factor it can be divided 

out, so it can be assumed that no positive integer > 1 divides each of 𝑎, 𝑏, 𝑐. Now 

6𝑐2 is divisible by 3, so 𝑎2 + 𝑏2 must also be divisible by 3. The reader should 

be able to check that a sum 𝑎2 + 𝑏2 can only be divisible by 3 if both 𝑎 and 𝑏 are 

divisible by 3. But then 𝑎2 and 𝑏2, and hence 𝑎2 + 𝑏2, are divisible by 9. This 

implies that 6𝑐2 must be divisible by 9, i.e. 2𝑐2 is divisible by 3. Thus 3 divides 

𝑐2 and nence also divides 𝑐. But to have 𝑎, 𝑏, 𝑐 all divisible by 3 is a contradiction. 

Proof of Theorem 5.4. Suppose there is a plane of order 6. Its incidence matrix 

𝐴 will have 43 rows and columns, and will satisfy 

𝐴𝐴′ = [

7 1 1 … 1
1 7 1 … 1
⋮
1 1 1 … 7

] 

Thus, if 
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𝐵 = [

0
𝐴 ⋮

0
0 0 … 0 1

]

𝟒𝟒×𝟒𝟒

 

then 

𝐵𝐼44𝐵
′ =

[
 
 
 
 
7 1 … 1 0
1 7 1 0
⋮ ⋱ ⋮ ⋮
1 1 … 7 0
0 0 … 0 1]

 
 
 
 

(5.8) 

Also; if 𝐻 is as in Lemma 1, and if 

𝐾 = [

𝐻
𝐻 0
0𝐻

𝐻

]

44×44

 

then 

𝐾𝐼44𝐾
′ = 6𝐼44. (6.9) 

Now the quadratic form associated with the matrix on the right of (6.8) is 

7(𝑥1
2 + ⋯ + 𝑥43

2 ) + 𝑥44
2  + ∑  

𝑖≠𝑗

 𝑥𝑖𝑥𝑗

1 ⩽ 𝑖, 𝑗 ⩽ 43

 = (𝑥1 + ⋯ + 𝑥43)
2 + 𝑥44

2 + 6(𝑥1
2 + ⋯ + 𝑥43

2 )

 

and the quadratic form associated with the matrix on the right of (5.9) is 

6(𝑥1
2 + ⋯+ 𝑥44

2 ) By (5.8) and (5.9), these forms are both transformed into the 

form associated with the matrix I44 by a non-singular linear change of variable. 

Combining these changes together, a non-singular change of variable 

[

𝑥1

… .
𝑥44

] = 𝑃 [

𝑦1

… .
𝑦44

] 

Must exist such that 

6(𝑦1
2 + ⋯ + 𝑦44

2 ) = (𝑥1 + ⋯ + 𝑥43)
2 + 𝑥44

2 + 6(𝑥1
2 + ⋯ + 𝑥43

2 )………(5.10) 
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the matrix P being non-singular and with rational numbers as its entries. In 

particular, there are rational 𝑝1,1 … … . 𝑝1,44 such that 

𝑥1 = 𝑝1,1𝑦1 + ⋯… . 𝑝1,44𝑦44………..(5.11) 

If 𝑝1,1 ≠ 1, put 𝑥1 = 𝑦1.If 𝑝1,1= 1, put 𝑥1 = −𝑦1,. In either case, 𝑥1
2 = 𝑦1

2 and, 

by (5.11), with𝑥1, replaced by 𝑦1 , 𝑦1 now depends on 𝑦2,---, 𝑦44. In the relation 

for 𝑥2 corresponding to (5.11), 𝑦1  can there- fore be replaced to give 

𝑥2 = 𝑞2𝑦2 + ⋯… . 𝑞44𝑦44, 

with each 𝑞i rational. Now set 𝑞2 =± 𝑦2 as before. This induces a dependence 

relation expressing y in terms of y3, . . ., 𝑦44. Continue this process to reach 

eventually 

𝑥43 = 𝑟43𝑦43 + 𝑟44𝑦44 

Now put 𝑥43 = ±𝑦43 to get 𝑦43 = ±𝑔𝑦44 

for some rational number g. So far, the 𝑦𝑖 have been unspecified. Choose 𝑦44 to 

be any non-zero rational. Then 𝑦43, . . ., 𝑦1 are all uniquely specified, as are all 

the x𝑥𝑖;. Moreover, 𝑥i
2 =𝑦i

2 for eachi=1,..., 43, so (6.10) becomes 

6𝑦44
2 = 𝑦44

2 + (𝑥2 + ⋯… . 𝑥44)
2 

Thus, there is a rational solution of 6c2 =a2 + b2. On multiplying through- out by 

the square of the denominator, a contradiction to Lemma 2 is obtained. Using 

ideas similar to those of the above proof, it is possible to obtain a much more 

general result which rules out the existence of some potential symmetric (v, k, 𝜆) 

configurations where 𝜆(v — 1) = k (k — 1) holds.  

Example 5.3: 

(a) There is no symmetric (46, 10, 2) design since 10 — 2= 8 is not a square.  

(b) There is no symmetric (29, 8, 2) design since the equation z2 = 6x2 + 2y2 has 

no non-trivial integer solution. (Imitate the proof of Lemma 2: z must be even, so 
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z = 2w, so 2w2 = 3x2 + y2, so y2 +w2 must be divisible by 3; so y and w are 

themselves divisible by 3, and hence so is x.)  

The special case 𝜆 = 1, k =n+1, v =n2 +n +1 has v odd, and the equation which 

has to have a nontrivial solution is z2 =nx2 (= 1) n(n+1)/2 y2. If n is of the form 

4m+1 or 4m + 2 then n(n + 1)/2 is odd and so the equation becomes y2 + z2 = nx2; 

standard number theory shows that this requires n to be of the form described 

earlier. If n is of the form 4m or 4m + 3, then ½ n(n + 1) is even and the equation 

becomes z2 — y2 = nx2, this does have non-trivial solutions: (x, y, z)= (1, 2m + 1, 

2m + 2) if n=4m + 3,(x, y, z)=(1,m— 1,m+1)if n=4m. 
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