L0 G6OT ITEOTLOEUOTIWILD S+ [H S JEOTITI LI6L&H M6V S SHLNSLD

MANONMANIAM SUNDARANAR UNIVERSITY
TIRUNELVELI-627 012

QS MeM6VHBleM6V QGITLT SHevall @ UIGHEEL0D

DIRECTORATE OF DISTANCE AND
CONTINUING EDUCATION

B.Sc. MATHEMATICS

111 YEAR
COMBINATORIAL MATHEMATICS

Sub. Code: JEMAS52

Prepared by
Dr. S. KALAISELVI
Assistant Professor
Department of Mathematics
Sarah Tucker College(Autonomous), Tirunelvei-7.




B.Sc. MATHEI;;[ﬁiCS —IIT YEAR
JEMAS2: COMBINATORIAL MATHEMATICS
SYLLABUS

Unit I

Selections and binomial coefficients- Permutations-Ordered selections-
unordered selections-Miscellaneous problems

Chapter 1: Sections 1.1 to 1.3

Unit I1

Parings problems: Pairings with in a set-Pairing between sets.

Chapter 2: Sections 2.1 and 2.2
Unit ITI

Recurrence-Fibonacci-type relations using generating functions- Miscellaneous
methods.

Chapter 3: Sections 3.1- 3.4
Unit IV

The Inclusion-Exclusion Principles-Rook Polynomial.

Chapter 4: Sections 4.1 - 4.2

Unit vV

Block designs - square block designs.

Chapter 5: Sections 5.1, 5.2

TEXT BOOK

Issac and Dr. Arumugam S, Sequences and Series and Trigonometry (2014),

New Gamma Publishing house.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



s s s

JEMAS52: COMBINATORIAL MATHEMATICS

CONTENTS
Unit |
1.1 Permutations 3
1.2 Ordered selections 5
1.3 unordered selections 7
Unit 11
2.1 Pairings with in a set 16
2.2 Pairing between sets 21
Unit 111
3.1 Recurrence 29
3.2 Fibonacci 35
3.3 Type relations using generating functions 40
3.4 Miscellaneous methods 51
Unit IV
4.1 The Inclusion- Exclusion Principles 55
4.2 Rook Polynomial 61
Unit V
5.1 Block designs 71
5.2 square block designs 79

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Unit I
Selections and binomial coefficients- Permutations-Ordered selections-
unordered selections-Miscellaneous problems

Chapter 1: Sections 1.1 to 1.4

1. Selections and binomial coefficients:
1.1. Permutations:
This chapter will investigate the problem of finding how many ways there are of
selecting k objects from a set of n objects. There are essentially four different
problems here, depending on whether or not selections are ordered, and also on
whether or not repetitions are allowed (i.e. whether or not an object can be
selected more than once).
To start with, consider the problem of listing in order all the elements of a set of
size n. If p(n) denotes the number of such listings, then
p(1) =1,p(2) =2p(3) =6
To see that p(3) = 6, let the objects be a, b, c. Then the 6 possible listings are
abc,ach, bac, bca, cab, cba
Any such ordering is called a permutation of a, b, c.
The general formula for p(n) is now obtained. Choose one of the n objects to
be placed first in the list. This can be done in n ways, and each of these n
choices results in ( n — 1) objects being left. These (n — 1) objects can be
placed in the ( n — 1) remaining places in p(n — 1) different orders, so that the
recurrence relation
p(n) =np(n—1)

is obtained. This, with the boundary condition p(1) = 1 gives, by Example 1.1,

p(n) = nl. (1.1)

3
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Example 1.1:
A breakfast cereal competition lists 10 properties of a new make of car and asks
the eater to place these properties in order of importance. (a) How many orderings
are possible? (b) How many would be possible if the first and tenth places were
already specified?
Solution:
(a) 10 !;
(b) 8 properties are left to be ordered. This can be done in 8 ! ways.
Example 1.2:
A sports magazine decides to publish articles on all 22 first division (football)
league clubs, one club per week for 22 weeks. In how many ways can this be
done if the first article must be about Arsenal? How many if Wolves and Stoke
must be featured on consecutive weeks?
Solution:
(a) 21 teams are left to be ordered, so there are 21 ! orderings.
(b) Consider Stoke-Wolves as one unit. Then this unit and 20 others have to be
ordered. This can be done in 21 ! ways. But in each way there are two possible
orderings of the Stoke-Wolves unit, so the required number is 2 X 21 !
Exercises 1:
1. How many 9 -digit numbers can be obtained by using each of the digits
1,2, ...,9 exactly once? How many of these are bigger than 500000000 ?
2. How many permutations are there of the 26 letters of the alphabet in which
the 5 vowels are in consecutive places?
3. How many ways are there of listing the 26 letters of the alphabet
(a) so that the five vowels appear consecutively, (b) so that A and B do not

occur next to each other?
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4. Tt is required to seat n people round a table. Show that this can be done in

(n — 1) ! different ways. (Hint: put the n people in a row and then join up
the ends of the row. Some rows will give the same circular arrangement.)
5. How many different necklaces can be designed from n colours, using one
bead of each colour?
1.2. Ordered selections:
The competition of Example 1.1 will now be slightly changed. Suppose the eater
is now asked to choose only the 6 most important properties and to place these 6
in order of importance. How many possible lists are there now?
In general, let p(n, ) denote the number of ways of listing  objects chosen from
n. As for permutations above, the first object on the list can be chosen in n ways,
and then ( r — 1) of the remaining ( n — 1 ) objects have to be added to the list.
Thus
p(n,r) =np(n—1,r—1).
This gives
p(n,r)=n(n—-1).(n—-r+2)p(n—r+11)
where there is the boundary condition p(s, 1) = s for all s. Thus

p(n,1) =nn—-1).(n—-r+2)(n—r+1)
n!

= G2

. .. 10!
In the above example, therefore, the number of possible lists is R

Example 1.3:
There are 5 seats in a row available, but 12 people to choose from. How many
different seatings are possible?

Solution:
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p(12,5) = —.

Example 1.4:

30 girls, including Miss U.K., enter a Miss World competition. The first 6 places
are announced.

(a) How many different announcements are possible?

(b) How many if Miss U.K. is assured of a place in the first six?

Solution:

() p(30,6) =

(b) Here subtract from p(30,6) the number of placings which do not include

30!
240

Miss U.K. Such placings are in effect ordered selections of 6 from 29
candidates, so there are p(29,6) such orderings. The required number is

therefore
30! 29! 29! 20— 247 — 6.29!
24! 231 24!( )= 241"

In the above examples, once an object has been chosen it cannot be chosen

again. However, sometimes repetitions are allowed.

Example 1.5:

For each day of the 5-day working week I can choose any one of 4 newspapers
to read in the train. How many different buys are possible in a week?
Solution:

The point here is that if I buy the Times on Monday, I can still buy the Times
later on in the week. For each day there are 4 choices, so the total number of
choices for the week is

4X4X4X4X4=14%=1024
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Clearly the number of ways of choosi;lg k objects in order from a set of n
objects, with repetitions allowed, is just n*, since there are n objects to choose
from each time.

Exercises 2:

1. Evaluate p(7,4),p(8,2),p(9,5).

2. A car registration number is to consist of 3 letters followed by a number
between 1 and 999 . How many car numbers are possible?

3. Tom has 75 books but enough room on his bookshelf for only 20 . In how
many ways can he fill his shelf?

4. How many numbers between 1000 and 3000 can be formed from the
digits 1,2,3,4,5 if repetition of digits is (a) allowed, (b) not allowed?

5. In twelve-tone music, the twelve notes of the chromatic scale are put in a
row, and have to be played in that particular order. How many rows are
possible?

6. A 12-person committee has to appoint from its own members a chairman,
secretary and treasurer. In how many ways can this be done?

7. In how many ways can a 5-letter word be formed from an alphabet of 26
letters if repetitions are (a) allowed, (b) not allowed?

8. A binary sequence of length n is a string of n digits each of which is 0 or
1 . How many such sequences are there? List all those of length 4.

1.3. Unordered selections:

Often in making a selection, the selected objects are not placed in any particular
order. For example, if 5 out of 8 books are to be chosen, the only interest is in
which 5 are chosen, not in the order in which they are chosen. How many ways

are there of choosing 5 books from 8?
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More generally, let c(n, ) denote the number of ways of choosing r objects from

n given objects, without taking order into account. Consider any selection of r
objects. This selection can be ordered in p(r) = r! different ways, and so each

unordered selection gives rise to r! ordered selections. Thus

rlc(n,r) = total number of ordered selections

n!
T (n-n)!
so that
n!
c(n,r) = m (1.3)

This number is often written as (Trl) Thus

n n!

()=
For example,

c(8,5)=(8>= 8! =8.7.6=56.

5 503 3-2-1
There are therefore 56 ways of choosing 5 books from 8 .
Example 1.6:
The third method of attacking the problem gave

fmk)=c(n+k—-1,n-1)
Thus
n+k—1 (n+k—1)! (n+k—1)!
f (k) =( n—1 >=(n—1)!(n+k—1—n+1)! T =Dk

agreeing with method 2.

One of the important properties of the numbers (rrl) is given in the following

theorem. The convention that (’3) = 1 is followed.
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Theorem 1.1:
() =GL)-©O<r<m.
Proof:
Two alternative proofs are given, both of which should be studied.
First proof
Selecting r objects from n is equivalent to choosing the ( n — r ) objects which
shall not be selected!

Second proof

ny n! _ n! o n
(r)_r!(n—r)! T m—-(m-r)'(n—-1r) (n—r)'
Example 1.7:

(1) (3) = (2) (2) (nr_ll) = (111) =n and (niz) = (g) = %n(n — 1) for all n.

The numbers (le) are of extreme importance in mathematics. This is because of

the following theorem.
Theorem 1.2:

Let n be a positive integer. Then, if (1 4+ x)™ is expanded as a sum of powers
of x, the coefficient of x" is (:)

Example 2.8.
1+x)° =1
( )
1+x)t=1+x
(
(1+x)2=1+2x+x?
1+x)3=1+3x+3x%+x3
(
(1+x)*=1+4x + 6x% + 4x3 + x*
(1+x)°>=1+5x+10x? + 10x3 + 5x* + x°

Proof of Theorem 1.2. Consider the product
A+x)(1+x)..(1 +x) (nbrackets ).
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A term x" is obtained by choosing r of the brackets, selecting the term x from
each of them, and selecting the term 1 from the remaining ( n — r ) brackets.
Thus, the number of times x” is obtained is just the number of ways of choosing
r of the n brackets, i.e. c(n, ).

The coefficients in the expansions are, by Example 1.8,

1
11
121
1331
14641
15101051

This array is known as Pascal's triangle. The ( n + 1 ) th row gives the numbers
(%) (1), ., (7). The property of Theorem 1.1 is simply that each row reads the
same forwards as backwards. But another property is clear in the triangle: each
number in the array is the sum of the two numbers immediately above it. This is
because of the following recurrence relation, for which again two proofs are
given.

Theorem 1.3:

=G+,

First proof. (2) is the number of ways of choosing r objects from n. Any
particular choice may or may not include the nth object. If the nth

object is included, the problem is that of choosing (r — 1) from the remaining
(n — 1), and this can be done in (?:D ways. If the nth object is not chosen, r
objects have to be selected from the remaining (n — 1), and this can be done in
(n;l) ways.

(n—-1)! (n-1)!
(r-Din-r!  rin-r-1)!

Second proof. (*-1) + (1) =

10
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_ (Tl - 1)! — n! (Tl)

_r!(n—r)!{r—l_(n_r)}=r!(n—r)!= r/

Example 1.9:
7 6 6
(4) = (3) + (4)'
Theorem 1.2 can be re-expressed in the following form.

Theorem 1.2: If n is any positive integer, then

@+ =)+ (er Qs e (=3 (O

r=0
More generally, the following results holds.
Theorem 1.4. If n is any positive integer, then
n n n n
n _ n n-1 n-2p2 4 ., n
(a+b)" = (O)a +(1)a b+(2)a b2 + +(n)b
n
n
— n-rjpr
= z (r)a b
r=0

Proof:

p\" " _
((l + b)n =qa" (1 + Z) =ql ;l:O (Z)(a) = ?:0 (Z)bra" T
Theorem 1.4 1s known as the binomial theorem, and the numbers (YTL) are called
the binomial coefficients. The name 'binomial' refers to the fact
that the theorem is concerned with the expansion of the nth power of a sum of
two symbols. As an example of the theorem,
(x +y)” =x7 +7x%y + 21x°y? + 35x*y3 + 35x3y* + 21x%y°> + 7xy® +
y’.
In the language of Chapter 1, (1 + x)™ is the generating function of the

binomial coefficients. One useful special case is the following.

11
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Theorem 1.5:

If n is any positive integer, then

A—20m=1—(Mx+ (Dx2 =+ D" = T (M)~

This follows from the binomial theorem on choosing a = 1,b = —x.

Example 1.10.

Later on in this book, it will be necessary to consider the following series:
2 43 44

exp(x) =1+x+§+§+z+...

Using the binomial theorem, it is easy to prove the following important
property:

exp(x)exp(y) = exp(x + ).
For the left-hand side is

x2 53 y2 y3
<1+X+E+§+'“)<1 +y+E+¥+~->,
so that, when the brackets are multiplied together, the terms of the form x"y*

with 7 + s = n which are obtained are precisely

xn xn—l xn—z 2 X n-1 n

— 4+ Z_l_ y_+...+_y—+y_

nl (m-—D!1 (n-—2)!2! 1'(n—-1)! n!

— l{xn _|_ n—!xn_ly + n—!xn_zyz + ces + yn)
n! (n—1)!1! (n—2)!2!
1

— n

=+

Already in this book the need for an expansion for (1 — x)™" has been met. Such
an expansion is impossible if it is required that there should be only a finite
number of terms, as happens in the expansion of (1 —x)",
but an infinite series representing (1 — x)~" can be obtained. In fact, since the
problem which gave rise to (1 — x) ™" has already been solved by another method

(method 3), we can turn this to our advantage and use it to prove:
12
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Theorem 1.6:

If n is any positive integer, then

1-x)"= 1+(T)x+(n;1)x2+(n;rz)x3+---

NGRS

Proof. The theorem simply states that f(n,r) = (n+:_1). But this has been

proved by method 3 (see Example 2.6).
Example 1.11:

(1—x)"*=1+4x+ 10x? + 20x3 + ---
Example 1.12:

Use Pascal's triangle and the fact that

Fur) = (n +7r— 1)

to extend the following table of values of f(n,r).

r

r*11 2 3 4 5 6

1 1 2 3 4

2 |1 3 6 10

3 |1 4 10 20

In concluding this section, note that the first three entries in the following table
have been explicitly presented in this chapter. What about the fourth? The number

of unordered selections of k objects (with repititions allowed) from n objects is

13
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the number of ways of choosing x4, ..., x,, (Where x; is the number of times the i

th object is chosen) such that x; + -+ + x,, = k, i.e. is just f(n, k) = (n+::_1)-

Number of ordered Number of unordered
Choose k fromn _ ]
selections selections
Repetitions not n! (n)
allowed (n—k)! k
" +k—1
Repetitions allowed | n* (",

Exercises 3:

1. Expand (1 + x)® and (1 — x)8.

2. Evaluate (141), (173), (185).

3. Obtain the first few terms in the expansion of (1 — x)~8.

4. How many solutions are there of the equation x + y +z = 10 with x,y, z
non-negative integers?

5. How many solutions are there of the equation x +y + z = 10 with x,y, z
positive integers?

6. An eight-man committee is to be formed from a group of 10 Welshmen
and 15 Englishmen. In how many ways can the committee be chosen if
(a) the committee must contain 4 of each nationality,

(b) there must be more Welshmen than Englishmen,
(c) there must be at least two Welshmen?

7. Aking is placed on the bottom left hand square of an 8 X 8 chessboard
and is to move to the top right-hand corner square. If it can move only up
or to the right, how many possible paths does it have to choose from?

8. By using the identity
14
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1+ =0+2x)"1+x)"

and considering the coefficient of x™ on both sides, prove that
2 2 2

()= G () () 40 )’

Verify this in the case n = 5.

15
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Unit I
Parings problems: Pairings with in a set-Pairing between sets

Chapter 2: Sections 2.1 and 2.2

2.1. Pairings within a set

Pairings problems fall, roughly speaking, into two categories. The first type is
concerned with splitting up a set with an even number of elements into pairs of
elements, for example arranging 2n students in n pairs to share rooms in a college
residence hall. The second type is concerned with pairing off the elements of one
set with those of another, for example assigning jobs to applicants so that no two
applicants get the same job. A problem of the first type will serve as the starting
point of this chapter. Given 2n objects, how many ways are there of forming n
pairs?

Example 1:

Six men A, B, C, D, E, F are to be paired off. One way is A with B, C with D, E
with F, whereas another way is A with C, B with F, E with D. There are 15 possible
ways altogether and the reader is left to produce the remaining 13. This method
is rather lengthy, and so a better method is looked for.

In general, when there are 2n objects, a first idea might be to place these objects
in brackets (2 in each) strung in a row as shown.

) () ()

The objects can be placed in the spaces in (2n)! different ways. In each bracket,
however, there are 2! different orderings, which have to be considered as giving
the same pairing, so the number (2n)! must be divided by 2! for each bracket, i.e.
by (2!)". Further, the order of the brackets does not matter, and since the brackets

can be arranged in n! different ways, each distinct pairing has in fact been

16
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obtained n! times. On dividing by n!a the total number of different pairings is

finally
(2n)!
(2|)nn' ........... (2.1)
For example, n = 3 gives ® = 15as already observed. This method oa clearly

233!
generalizes to the problem of splitting up mn objects into n sets of m objects, the
working above simply corresponding to m = 2.

Theorem 2.1:

Let S be a set of mn objects. Then S can be split up (partitioned) into n sets of m

1 s ] (mn)!
cliements 1n (mD™n!

different ways.

Proof:

Replace 2 by m in the above argument.

Example 2.2:

A wholesale company has to supervise sales in 20 towns. Five members of staff
are available, and each is to be assigned 4 towns to supervise.

(a) In how many ways can the 20 towns be put into 5 groups of 4?

(b) In how many ways can the towns be assigned to the staft?

Solution:

20!
(455!

(a) The theorem gives the number as

(b) Imagine that the towns have been arranged in 5 groups of 4 in some particular
way. Then the 5 groups can be assigned to the 5 men in 5! different ways,

depending on which group goes to the first man, which to the second, and so on.
!

(4hH55!"

The required number is therefore 5! times the number in part (a), i.e.

Note on (a). This corresponds to omitting the last part of the argument which
proved (2.1). Here the order of the brackets does matter, since the first bracket

corresponds to the first man, and so on.
17
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In practice, of course, things are generaﬂy far more complicated. In Example 2.1,

for example, A may refuse to be paired with B. This gives a new problem. Instead
of asking how many pairings are possible, the question becomes: does even one
pairing exist, taking into account the likes and dislikes of the six people?
Example 2.3.

In Fig. 2.1, the 6 dots represent 6 people. Two dots are joined by a line if and only
if the two people represented by the dots are willing to be paired together. Is it

possible to achieve a pairing?

Figure 2.1.

Solution:

No. For C can be paired only with E, and this leaves no-one to be paired with F.
A diagram such as Fig. 2.1 is called a graph. The dots are known as the vertices
and the lines as the edges. The convention will be followed in this book that any
pair of vertices of a graph can be joined by at most one edge. Roughly speaking,
the failure to find a pairing in the above example is due to the lack of edges.
Vertex F has only one edge emanating from it, whereas it could have as many as
five. The following theorem shows that if each vertex has at least half the possible
edges from it present, then a pairing can be achieved. The proof'is constructive in
the sense that it not only proves there is a pairing but it describes how a pairing
can be found in practice by a routine procedure. Such a procedure is called an

algorithm, and can be programmed for a computer. Two definitions are given
18
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before the proof. The degree of a vertex ;)f a graph is the number of edges with
that vertex as an end-point. For example, in Fig. 2.1, the respective degrees are 3,
2, 1, 1, 4, 1. Also, a pairing off of all the vertices of a graph is often called a
complete or perfect matching of the graph. Clearly a graph needs to have an even
number of vertices if it is to have a perfect matching.

Theorem 2.2:

If a graph has 2n vertices, each of degree >n, then the graph has a perfect
matching.

Proof:

Assuming that r pairs of vertices have so far been paired off, where r<n, the proof
shows how to increase this to (r + 1) pairs. If there are two vertices not yet paired
off but joined by an edge, they can be taken immediately as the (r + 1)th pair. So
suppose now that no two of the remaining vertices are joined by an edge. Choose
any two of them, and call them a and b. It will now be shown that there must be
a pair u, v of vertices already paired together such that a and uw are joined by an
edge and b and v are joined by an edge (see Fig. 2.2). The pairings can then be
rearranged so that a is paired with u and b with v, thus increasing the number of

pairs to (r + 1).

U )
/ \
II \\ #
‘ )
a b a b

Figure 2.2.
Suppose no pair u, v exists. Then each of the r pairs x, y of vertices so far formed
is such that at most two of the four possible edges ax, ay, bx, by actually appear

in the graph. Thus, the total number of edges from the r pairs to a and b is at most
19
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2r <2n. But since a-and b are both of degree >n, the number must be = 2n, giving

a contradiction. The algorithm is therefore as follows. Having obtained r pairs,
scan the remaining (2n — 2r) vertices to see if two of them are joined by an edge.
If not, choose any two of them, a, b, and scan the pairs x, y already formed until
one 1s found such that a is joined to x and b to y. Then replace the pair x, y by the
two pairs a, x and b, y. If r + 1< n, repeat the whole process.

Exercises 2.1:

1. 10 people meet and form 5 pairs. In how many ways can these 5 pairs be
formed?

2. 16 teams qualify for a particular round of the F.A. Cup. How many possible
pairings are there for the 8 games if it (a) is(b) is not taken into account
which teams are drawn at home?

3. A pack of 52 cards is divided among 4 people so that each gets 13 cards
(as in bridge). How many such deals are possible?

4. In the Scottish League Cup, 16 first division clubs were arranged in 4
groups of 4. In how many ways can this be done? Recently, Rangers and
Celtic were drawn in the same section two years running. Show that this is
not as strange as the press made it out to be by finding the number of ways
the draw can be made with Rangers and Celtic in the same section, and
verifying that this number is precisely one fifth of the total number of
possible draws.

5. The following are all the allowable pairings of 8 objects. (1, 2), (1, 3), (2,
4),(2,5),(4,6),(5,7), (5, 8), (7, 8). Obtain a complete matching.

6. Draw a graph with 10 vertices, each of degree = 5, and find a perfect
matching for it.

7. Construct a graph with 10 vertices, each of degree = 4, with no perfect

matching.
20
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2.2. Pairings between sets

A number of jobs are available in a large industrial organization, and applicants
are examined for suitability for each of the jobs. In what circumstances is it
possible to assign a suitable person to each?

This problem, one type of assignment problem, is typical of those to be examined
in this section. More generally, given two sets A, B (here, the set of jobs and the
set of applicants), when is it possible to pair off each member of A with a different
member of B?

Example 2.4:

Five jobs are available. For each z= 1, .....,5, let §; denote the set of applicants
suited for the ith job. Can all the jobs be filled?

5. ={(A,B,C},S; ={D, E} S3={D} S, ={E}, S5 ={A, E}.

Solution:

No. The second, third, and fourth jobs have only 2 suitable applicants between
them. But 2 men cannot fill 3 jobs.

This example deserves closer scrutiny. By introducing the sets Sj....., S5, the
problem has been re-expressed as one of the following type.

Given sets Sy,..., Sy 1s it possible to choose a different element from each set S;?
Ifit is possible, then the chosen elements are called distinct representatives of the
sets. In the above example, the sets S5, S4, S5 possess distinct representatives (D,
E, and A, in that order), but the sets Sy, S,, S3, S4, S5 do not.

The reason is:

There are 3 sets containing between them less than 3 elements. Clearly, if distinct
representatives do exist, then, for every value of k;

any k sets contain between them at least k elements. ......... (2.2)
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This is a necessary condition. The interesting and useful fact is that the condition

is not only necessary but it is also sufficient. In other words, if (2.2) holds for

every value of k, then it is guaranteed that distinct representatives can be found.

The proof which will be given is an algorithm which not only shows that distinct

representatives exist, but gives a method of actually finding them. The following

result will then have been proved.

Example 2.5:

IfA; = {1,2}; Ao = {4}; A3 = {1,3}; As= {2,3,4}. Find the distinct representative

for the set A;.

Sets | Distinct representative
Ay 1 2
As | 4
Ay 3 1
Ay 2 3

Example 2.6:

Find the set for distinct representative for the set {a};{a,b,c};{c,d,e}; {b,

d,e};{a,d,g}; {f};{c,f}

Sets

Distinct representative

(a}
{a,b,c}
{e,d, e}
{b,d,e}
{a.d, g}
{f}
(c.f}

a a
b b
& d
d e
g g
f

( e
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Theorem 2.3:

(Philip Hall’s theorem on distinct representatives). The sets A4,,..., Ag, possess a
system of distinct representatives if and only if, for all k =1,...,n, any k A;s contain
at least k elements in their union.

An alternative formulation would be:

Assignment Theorem:

This assignment problem has a solution if and only if there is no value of k for
which there are k jobs with fewer than k suitable applicants between them.
Replacing the job situation by marriage gives yet another formulation of Hall’s
theorem which has earned it the popular title of the Marriage Problem.
Marriage Theorem:

Given a set of men and a set of women, each man makes a list of the women he
is willing to marry. Then each man can be married off to a woman on his list if
and only if,

(*) {for every value of k, any k lists contain in their union at least k names.
Proof:

It is shown how, on the assumption that r <n men have been paired off with
suitable ladies, to increase this to (r + 1) men.

Suppose r men have been paired off. If there is a man left who has on his list a
woman who is still unattached, an (r + 1)th pairing is immediate.

So, suppose that all women on remaining lists are already attached.

Bl BI B,]'—l 'B.r

A, A, A, ¢ . Al

Figure 2.3.
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Choose any unmarried man A (see F1g 23). By (*) with k = 1, there is a woman
B; on his list. By is married to A4, say by (*) with k = 2, the combined lists of
Ay and A; contain the name of at least one more woman B,. If B, is unmarried,
stop. If B, is married to A,, then, by (*) with k = 3, the combined lists of Ay, 41,
A, contain a third name, say Bs . If B3 is unmarried, stop. If B3 is married to A3,
repeat the process, and continue until an unmarried woman By 1s reached. (This
must happen eventually since not all the women are married, and no B; occurs
twice in the process.

Note that, by construction, each B; is on the list of at least one A; with j<1i. This
is very important. Consider now B; Pair her off with an A; on whose list she
appears (i <s). This frees B;.Next pair off B; with an A; (j <i) on whose list she
appears. This frees B;. Repeat until some B is freed and re-paired with A,. This
must eventually happen. Then take all the new pairings and all the original ones
which have not been tampered with. Now (r+ 1) pairs have been obtained. Repeat
the process if r + 1<n.

This constructive proof, which was communicated to the author by D. J.
Shoesmith, has the advantage that the conditions (*) need not be checked before
the construction is attempted. If (*) does not hold,

this will become clear when the method breaks down. On the other hand, if (*)
holds, the method will not break down.

Application to Latin squares

11234
1123

12 211413
2131

211 30412
3112

4131112
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The three squares each possess the following properties (for n = 2, 3, 4
respectively),

(1) each row contains each of the numbers 1, .. ., 1 exactly once;

(2) each column contains each of 1, ..., n exactly once.

These are the properties which characterize Latin squares. An n x n Latin square
based on the numbers 1, . . ., 1 is thus defined to be an array of n rows and n
columns satisfying properties (1) and (2) above. Apart from their intrinsic
mathematical charm, Latin squares do have their uses, and may first have been
studied because of their uses in the design of experiments. A simple introduction
to this topic can be found in Fisher’s classical book [1].

How are Latin squares constructed? Very easily, in fact, for the next result shows
that the construction can be carried out a row at a time. The proof requires the
idea of a Latin rectangle, which is simply a rectangular array with r rows and n
columns (r< n) in which

(1) each row contains each of 1, ...,n exactly once;

(3) no column contains a number more than once.

For example, the first three rows of the 4 x 4 Latin square above give a 3 x 4 Latin
rectangle. The theorem to be proved is essentially a converse of this result: it
states that any Latin rectangle can be made into a Latin square by adding further
rows, without having to alter the rows already there.

Theorem 2.4:

If r <n, any rx n Latin rectangle can be extended to an (r + 1) xn Latin rectangle.
Proof:

An (r + 1)th row has to be added, the jth number in which does not yet occur in
the jth column of the rectangle. This suggests that for each j=I,...,n the set S;
should be defined as follows:

S; = set of numbers between | and n which have not yet appeared in the jth column.
25
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To prove the theorem, it is sufﬁcienf to "show that the sets S; possess distinct
representatives. These distinct representatives will form the next row.

Suppose then that the sets S; do not possess distinct representatives. Then by
Hall’s theorem, there must, for some k, be k sets S; which in their union contain
less than k numbers. Now clearly each set S; has (n — r) elements, so these k sets
contain between them k(n — r) numbers, not taking repetitions into account. How
many times can a number be repeated? Each number has occurred exactly once
in each row, and hence in exactly r of the columns. Each number therefore occurs
in exactly (n —r) of the sets S; The k sets therefore contain k(n — r) elements,
with no element repeated more than (n — r) times, and so must contain at least k
distinct elements. This gives a contradiction, and the proof is complete.
Application to tournaments

Consider a tournament involving n teams in which every team plays against every
. n :
other team exactly once. Such a tournament will have (2) f games and is often

called a round-robin tournament. Suppose that each game produces a winner

which is awarded one point and a loser which gains no point. Then after all
(721) games have been played the final points obtained by each team, when written

in decreasing order, form what is called the score sequence of the tournament.
Example 2.5.

A beats B, A beats C, B beats C, D beats A, B beats D, D beats C. So, A, B, and
D finish with 2 points each and C finishes with none. The score sequence is
therefore (2, 2, 2, 0).

Which sequences of m non-negative integers can be realized as the score
sequence of some tournament? For example, is it possible to have a tournament

with 6 teams, with score sequence (5, 4, 4, 1, 1, 0)? Certainly, the sum of the
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scores1s 15 =(g), However, to see that the answer is no, note that the three bottom
teams have only two points between them, whereas they should have at least three
points between them since they play 3 =(2) , games amongst themselves. In

general, a sequence (aq,a,, .......ay),a; = Ay = **+... = a,, of non-negative

integers can be a score sequence only if

a,+a, + - ...+a, = (g) ........... (2.3)

T
2

The remarkable fact is that these obviously necessary conditions are also

And a,_,i1 +Apyyp + o Fa, = ( ) foreachr,2 <r<n....... (2.4)

sufficient.

Theorem 2.5. (Landau’s theorem).

The non-negative integers

as form the score sequence of a tournament if and only if conditions (2.3) and
(2.4) are satisfied.

This result will be deduced from Hall’s marriage theorem. In fact, a

slight generalization of Hall’s theorem is needed, which can be expressed

in terms of harems rather than marriages; here each man can marry more
than one woman, but no woman can have more than one husband.

Theorem 2.6. (The Harem theorem)

Let wy,,..., w,, be non-negative integers, and suppose that men M,,,..., M,,,

each makes a list of the women he is willing to marry. Then each M;, can be

married to w;, women on his list if and only if, for any subset {i;....., i,-}of
{1,...n}, the lists of men M;,......M; contain in their union at least
Wil’ e aee s Wl-rnames.
Proof:
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The condition is clearly necessary, so we prove sufficiency. Replace each

man M; by w; copies, each of which has the same list as M; had. The problem

is to pair off each copy with a woman on his list. Consider any set of copies,

consisting of, say, x; copies of M;where x; <w; ,i €l € {1,...... n}.Their

Their lists contain at least )};c; w; = Y;¢; X;names, names as men, so by Hall’s

theorem the copies can be married off.

Exercises:

1. If A, = {1, 2}, Az = {4}, A3 = {1, 3}, and A, = {2, 3, 4}, find distinct
representatives for the sets A4;.

2. Find a set of distinct representatives for the following sets: {a}, {a, b, c},
{c,d}, {b, d, e}, {e, f}, {a, d, g}, {f}.

3. Construct 2 different 5 x 5 Latin squares which have the same first rows,
but no other rows the same.

4. mn newspaper reporters each cover one sport and one foreign country,
in such a way that each of n sports has m reporters and each of n countries
has m reporters. Use the previous example to show that it is possible to
staff m newspapers each with n reporters so that each sport and each
country is covered by each newspaper.

5. Does there exist a tournament with score sequence (a) (4, 4, 1, 1, 0),

(b) (3, 3, 3, 1, 0)? If yes, construct one: if no, explain why.
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Unit IT1
Recurrence-Fibonacci-type relations using generating functions- Miscellaneous
methods.

Chapter 3: Sections 3.1- 3.4

3.Recurrence
3.1. Some miscellaneous problems:
Some combinatorial problems reduce to examining a sequence {a,} of numbers
a,, a,, as, ... in the hope of obtaining a formula for the nth member a,, of the
sequence. Often a,, is expressed in terms of previous members of the sequence,
1.e. a recurrence relation is given, and also the first few values are given, for
example a; and a,. The problem is then to deduce a formula for a,,.
A few such problems are now exhibited.
Example 3.1:
The Fibonacci sequence, mentioned in Chapter 1, is defined by

a1 =1la; =2,a, =ap1+an, (n>3),
and the problem is to find a formula for a,,. This sequence was investigated in
the 13th century by Leonardo Fibonacci of Pisa, in connection with the growth
of the rabbit population.
Example 3.2:
Some combinatorial problems in chemistry reduce to counting the number of
graphs of a certain type. A tree is defined to be a connected graph with no cycles,
i.e. a connected graph in which it is impossible to start at a vertex, move along
different edges and arrive back at the starting place. Examples of trees are shown

in Fig. 3.1,
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whereas the graph in Fig. 3.2 is not a tree, one cycle being abcd. Trees can be

Fig. 3.1

used to represent the structure of chemical compounds, and it was in this way that
Cayley was led to his studies of graph theory in the 1870 s.
As an example of the type of problem involved, consider the problem of counting

simple rooted trees. A simple tree is defined to be a tree in
d ¢ I

a b
Fig. 3.2

which each vertex is of degree < 3. (Recall that the degree of a vertex is the
number of edges emanating from it.) One way of looking at a simple tree is to
consider it as a road system in which one has a choice of at most two roads at
each roadend. The simple trees to be considered are those rooted at a certain

vertex P (see Fig. 3.3). P can be considered as the

P

Fig. 3.3
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starting point of the tree's growth, andﬁécordance with the requirement that at
most two edges are available on reaching any vertex, it will be assumed that there
are at most two edges emanating from P. An example of such a rooted simple tree
is shown. The problem is to evaluate u,,, the number of different rooted simple
trees with n vertices.

A difficulty, fundamental to most combinatorial problems, immediately arises.
When are two trees to be considered different? For example, are the two trees in

Fig. 3.4 the same or different? After all, in any practical realization, (a) can be

picked up and turned over to give (b).

P P

(a) (b)

Fig. 3.4

Since it is a good idea to start with as simple a problem as possible, it will be

considered here that (a) and (b) are distinct. Then

ul=l .P

N AKX

and so on. In evaluating u,,n > 2, two types of trees have to be considered. Let
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s, denote the number with only one edge from the root P, and let d,, denote the
number with two edges from P. Clearly
U, =s,+d,.(n>2) (3.1)

Now consider s,,. A tree contributing to s,,,1 is of the form

@Z
where, inside the circle, there can be any simple tree with n vertices rooted at Q.
There are u,, such trees. Thus

Sn+1 = Un. (3.2)

Next consider d,, . A tree contributing to d,,,; is of the form

where there is a rooted simple tree at Q with, say, r vertices, and a rooted simple
tree at R with s vertices, r + s =n,r > 1,s > 1. For each such pair of values

of r and s there are u, choices of what happens at Q and ug choices at R; u,-ug

choices altogether. Thus
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Anyq = U Up_q T UpUp_p + -+ Uy Uy

UplUg.  eevrennnnnns (3.3)

r+s=n
r>=1,s>1

The relations (4.1) to (4.3) then yield
Un+1 = Sp+1 T At
= U, + Z U, Uy,
ro11

1.e.

Up = Up—1 + (UiUp—z + UpUy 3 + - + Up_2Uy). (3.4)
How is a formula for u,, obtained from this recurrence relation?
Example 3.3:
The problem of derangements. Suppose that n jobs have been assigned to n
people. In how many ways can they be reassigned the following day so that no
person is given the same job as before?
In general, a derangement of the numbers 1,2,...,n is a rearrangement or
permutation of them such that no number appears in its original position. For
example, 23514 is a derangement of 12345, but 23541 is not. Let a,, denote the
required number; then a,, is simply the number of derangements of 1, ..., n, for it
can be supposed that the jobs are so labelled that the i th person got the i th job
on the first day.
Clearly a; = 0 (why?), a, = 1,a3 = 2. To see that a; = 2, note that the only
derangements of 123 are 231 and 312.
Suppose now that n > 2, and consider two possibilities. The first possibility is
that in a derangement of 1, ..., n the number n changes places with some other
number r. There are ( n — 1 ) choices for r, and for each such choice the

remaining ( n — 2 ) numbers must undergo a derangement. The number of ways
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this can happen is (n —1)a,_,, and this therefore gives the number of

derangements of 1, ...,n in which n changes places with another number. The
second possibility to consider is when some number r moves to the nth place, but
n does not move to the r th place. In this case, ignore r which has now been
placed, and relabel n by r. This gives (n — 1) numbers 1, ..., (n — 1) to arrange,
and the condition is again simply that no i is to placed in the i th place. There are
a,,—1 such derangements for each of the n — 1 choices of r, and so (n — 1)a,,_;
derangements of this type. Thus

an =M —1ay_1+(n—1a,_, (3.5)
and the problem is how to solve this recurrence relation subject to the boundary
conditions a; = 0,a, = 1.
Exercises 1:

1. Use (4.4) to find us, and check your answer by drawing all possible
rooted simple trees with 5 vertices.

2. Use (4.5) to find a4, and check your answer by writing down all the
possible derangements of 1234.

3. Suppose that any newborn pair of rabbits will produce their first pair of
offspring after two months, and thereafter will produce one pair per
month. Starting with one newborn pair, the growth of population is as
follows, where A denotes a newborn pair, B a month-old pair, and C a

fully-adult pair:

after 1 month B
2 months CA
3 CBA

4 CCBAA
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Prove that a,, the number of pairs of rabbits in the population after n months,
satisfiesa; = 1,a, = 2,a,, = a,_1 + a,_,(n > 3). It is to be assumed that no
deaths occur!
3.2. Fibonacci-type relations:
A method of solving recurrence relations of the form
a, = Aay,_1 +Ba,_, (n > 3) (3.6)
is now given, where A and B are non-zero constants. As is shown, the method is
essentially just that of solving the associated quadratic equation
x? = Ax + B.

Theorem 3.1.
Suppose that a; and a, are given and that (3.6) holds. Then
(1) if the roots a, B of the equation x> = Ax + B are distinct, then

a, = Kja" + K,p"
where the constants K, K, are determined uniquely by a; and a,;
(2) if x> = Ax + B has repeated root a, then

a, = (K; + nK,)a"
Example 3.4:
The Fibonacci sequence. Here A = B = 1, so consider the equation x% = x + 1.

This has roots

a=%(1+\/§),,8 =%(1—\/§)

B 1+v5\" 1-v5\"
an—K1< : >+K2( : )

for some constants K;, K,. Since a; = 1 and a, = 2,

so that
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These give

so that

14—V§>"+1 1 (1—-#§>n+1

s7) w0

This may at first sight seem rather odd, since it is known that a,, must be an

integer. However, all the v/5 terms cancel out. The binomial theorem gives

1 1 (& m+1 H21H1n+1 rer/s
eSS e
r= r=

1 1 ¢m+1 n+1 n+1
_ -t 1/2 £3/2 ( )55/2 }
mi(l)5+(3) #(Tg )

= ()5 (3 ) e (1)

which is an interesting result since it is not immediately obvious that the sum in

the brackets must be divisible by 2.

n+1

Note, further, that since 0 < - (\/— -1) <1, (1 \/_) — 0asn - o;s0a, is

1_}_\/—)n+1

approximated by \/_( 5

in fact a,, is just the integer nearest to this

value.
Proof of Theorem 3.1. (1) The idea is to explore when a,, = a™ can be a

solution of (3.6). Now a,, = a' satisfies (4.6) precisely
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when a™ = Aa™ 1+ Ba™?, ie. when a2 = Aa + B, i.e. when « is a root of
the quadratic equation x* = Ax + B. Thus, if the quadratic equation has two
distinct roots a, B, then a,, = a™ and a,, = B are both solutions of (3.6). It
follows that if K; and K, are constants then a,, = K;a™ + K,8" is also a
solution; for

Aa,_1+Ba,_,=AK a1+ K, ) + B(Kja™ 2 + K, %)
=K, (Aa" 1+ Ba"?) + K,(AB™ 1 + Bp™?)
=Kia"+ K" =a,

The values of a; and a, will determine K; and K, uniquely; for the equations
a, = Kja + K,f,a, = K;a? + K, 8% have solution
a.f —a, a,ax—a,
Ki=——FK,=——+-
aB-a)’t Bla-B)
(Note that a — f§ # O since a # [, and a, f # 0 since B # 0.)
(2) In this case it is sufficient to verify that, if « is a repeated root of the

quadratic, then a,, = na™ also satisfies (4.6). Note that
Aa,_1+Ba,_,=An—Da™ 1+ B(n—2)a™ 2

=n(Aa™ !+ Ba™?) — a™ ?(ad + 2B)

=na™ — Aa"" 1 - 2Ba™?
But if a is a repeated root of x2 = Ax + B thenx? —Ax — B = (x — a)? =
x? —2ax + a?,sothat A = 2« and B = —a?; so

Aa,_1 +Ba,_, =na™ - 2a" + 2a™ =na™ = a,
as required.
Note that this theorem and its proof will easily generalize to recurrence relations
of the form
ap = Aiay_1 +Aay_> + -+ Ara,_,

for any fixed 7 : for example, if x3 = Ax? + Bx + C has 3 distinct roots a, 8,y
then a, = K;a™ + K, ™ + K;y™ will be a solution of
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a, = Aan_l + Ban_z + Can_3

Example 3.5:

Solve a,, = 6a,,_1 — 11a,,_, + 6a,_3 given that a; = 2, a, = 6,a; = 20.

Solution. The equation x> = 6x% — 11x + 6 has solutions x = 1,2,3; so the

general solution of the recurrence relation is

a, = A1™ + B2" + C3"

The given boundary conditions give 2 = A + 2B + 3C,6 = A+ 4B + 9C,
20=A+8B + 27C,sothat A = C = 1,B = —1. Thus, the solution is

a,=1-2"+3"

Exercises 2:

1.
2.
3.

Ifa, = 4(a,_; — a,_,) foreachn > 3, and if a; = 0,a, = 4, find a,.

>
Ifa, = 5a,_, — 6a,_, foreachn >

3,and if a; = a, = 1, find a,,.
If a,, denotes the nth Fibonacci number, prove that
Apiz = ap +ap_q +-+a; + 2
Let by, = (7) + ("Il) + (";2) + -+ Verify that b; = 1, b, = 2, and show
that b,, = b,,_1 + b,_,(n > 3). Thus b,, gives another formula for the

Fibonacci numbers.

. If a,, is the nth Fibonacci number, prove that

ap = Gp_10p4q = (D"

In working through a problem, a man is said to be at the nth stage if he is
n steps from the solution. At any stage he has 5 choices. Two of these result
in him going to the ( n — 1 )th stage, and three of them are better in that
they take him direct to the ( n — 2 ) th stage. Let a,, denote the number of
ways he can reach  the solution from  the nth
stage. If a; = 2, verify that a, = 7 and obtain a recurrence relation for a,,.
Deduce that
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7. Find a, ifa,, = 4a,,_1 + 4a,,_, — 16a,_3,a; = 8,a, = 4,a3; = 24.

8. Find a, ifa, = 5a,_1 — 8a,_, + 4a,_3,a; = 4,a, = 8,a3 = 20.

9. The n X n determinant D,, is defined for n > 1 by

|1+ a® a 0 0 0 |
a 1+ a? a 0 0
D,=| 0 a 1+a® a 0
0 0 0 0 .. 1+ad?
Show that, if n > 3,D,, = (1 + a®)D,,_; — a®D,,_, and hence show that
1-a?2 )
D, = — ifa* # 1What ifa® = 1 ?

10. Let a,, denote the number of n-digit sequences in which each digitis O or 1 ,
no two consecutive 0 s being allowed. Show that a; = 2,a, = 3 and that a,, =
an_1+ a,_»(n > 3). Hence find a,,.
11. Let b,, denote the number of n-digit sequences in which each digit is
0,1, or -1, if no two consecutive 1 s or consecutive -1 s are allowed. Prove
that b,, = 2b,,_1 + b,_,(n > 3) and hence find b,,.
12. A flag is to be designed with n horizontal strips each of which can be any
one of the colours red, blue, green and yellow. Find the number of different
designs possible in each of the following situations:
(a) there is no restriction on the colour of each stripe;
(b) no two adjacent stripes have the same colour;
(c) no two adjacent stripes have the same colour, nor do the top and bottom
stripes.
13. Let a,, denote the number of ways of filling a 2 X n array with 1 X 2
dominoes. Verify that a; = 1, a, = 2, and show that a,, is the nth Fibonacci

number.
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14. Now let a,, denote the number of ways of filling a 3 X 2n array with 1 X 2

dominoes. Arrange the sides of length 3 to be vertical, and let x,,, y,, be,
respectively, the number of solutions in which the right-hand end has, does not
have, 3 dominoes touching it. Then a,, = x,, + y,,. Show that x,,,; = x,, + ¥,
and y, .1 = 2x, + 3y,. Deduce that a,,,, = 4a,,41 — a,, and hence obtain a
formula for a,,.
15. A primitive organism takes one hour to mature. At the end of the next hour it
produces two offspring and does the same each subsequent hour. Each offspring
behaves in a similar fashion. Start with one newly born organism and let a,,
denote the number of organisms existing after n hours. Prove that a,, = a,,_; +
2a,,_, and hence find a formula for a,,.
16. Repeat the previous problem with the difference that each organism dies
immediately after producing its first pair of offspring.
3.3. Using generating functions:
The recurrence relation (3.4) obtained on counting rooted simple trees does not
look too attractive; it looks too difficult to deal with. It sometimes happens that
such relations are better dealt with by means of generating functions. As was
explained in the opening chapter, the generating function for a given sequence
ag, A1, Ay, ..., Ay, -.. 1 defined to be

f(x) =ay+ ax+ ax?+ -+ a,x™ + -
where the coefficient of x™ in f(x) is precisely the term a,, of the sequente.
Let u(x), s(x), and d(x) be the generating functions for Example 3.2, where

u(x) = uyx + upx? + ugx3 + -
=x+x%+2x3+ -
S(x) = s1x + 5,x% + s3x3 + -+
=x%+x3+2x*+ -
d(x) = dyx + dyx? + dgx3 + -
=x3+2x*+ -
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on noting that s; =d; =d, =0 (Why?) From (4.1),
u(x) =x+s(x) +d(x) (3.7)
Also, since sp,41 = Uy,

s(x) = xu(x), (3.8)
as can be checked by comparing the coefticients of any power of x on each side
of the equation. Finally, from (3.3), it follows that

d(x) = x{u(x)}>. (3.9)
If (a) and (b) are considered the same, the resulting counting problem is much
more difficult, and the ideas of Polya's theorem are required. Equations (3.7)-
(3.9) together give
u(x) = x + xu(x) + x{u(x)}?,

1.e.

x{u(x)}* + (x — Du(x) +x =0, (3.10)
which is a quadratic equation for u(x). The usual formula for solving such

equations then gives

u(x)= % [1 —x+J{(x-1)2 - 4x2}]

- % [1 —x+{1-Qx+ 3x2)}](3.11)

Now, by the binomial theorem,

11
3°3Y 3°3°3Y 1-3:-5..(2n-3)

1 1
Aoyp=l-gy = ="y~ o 27l

so that, on taking the minus sign in (4.11) to obtain positive coefficients u,,

1
u(x)= =% + = (Zx +3x2%) + — (2x + 3x?%)* +

222'
=x + x? +2x + 4x* + - (3.13)
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Technically, the problem is now solved. To find u,,, all that need be done is to

read off the coefficient of x™ in (4.13). If h,, denotes the numerical value of the

coefficient of y™ in (4.12), so that
(2n — 2)!

fn = ST (= 1)1

then it is straightforward to verify that

n—2
. ) + h,_,2""*32 ( ) +

2
n—r
oot hy 20237 ( ] )+ )3.14)

1 n n—2 n
un_l == E{hnz + hn_lz . 3 . (

This formula for u,, has its unattractive side. It is not very compact, and a certain
amount of effort is still required to evaluate u,, for any specific value of n,
particularly when n is large. However, all that is involved is essentially the
substitution of the particular value of n into (3.14), and this is all that is required
of a formula. Some mathematicians would take the view that the problem of
finding u,, was in fact solved well before this final formula was obtained-at the
stage (3.13) of obtaining the generating function u(x), since the values of all the
coefficients u, are implicit in u(x). This book will take the view that an explicit
formula is to be preferred to simply a generating function solution, and such a

formula should be aimed at whenever possible.

Further examples on generating functions

Example 3.6. Suppose that, in the problem posed at the beginning of Chapter 1,
there are 4 colours available (i.e. n = 4 ). How many colourings of the k golf
balls are possible if there must be an odd number of objects coloured with the
first colour?

Solution (1). As in the second approach to the original problem, the required

number is the coefficient of x* in
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x+x3+x5+-)A+x+x2+x3+-)3

=x(1+x*+x*+ )1 —-x)73,

which is just the coefficient of x*~1 in

(1+x*+x*+ ---)(1 + (i)x + (;)xz + (§)x3 + )
This coefficient is
)+ () + () + = (5D + (D + () + -
For example, k = 6 gives 34 possible colourings.
Solution (2). Alternatively, if exactly one ball is coloured with the first colour,

there are ( k — 1) balls left to be coloured with 3 colours. By the result (1.6),

1+3—1) — (k+1

k—1 k—1) ways. Similarly, if exactly 3 are coloured

this can be done in (k_

with the first colour, the remaining (k — 3) can be coloured in

(i

) = (’;:;) ways. Continuing in this way the same result is obtained as
before.

Example 3.7:

n-digit integer sequences are to be formed using only the integers 0,1,2,3. For
example, 0031 and 3202 are two 4 -digit sequences.

(a) How many n-digit sequences are there?

(b) How many n-digit sequences have an odd number of 0 s?

Solution:

(a) The number of sequences is 4™, since there are 4 choices for each of the n
digits.

(b) This is not so easy. The difference between the problem posed here and

Example 3.5 is that here it matters not only what digits appear, but also in what

order they occur.
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Any n-digit sequence will consist of dOO s,d115s,d,2 s and d33 s, where d is
odd and dy + d; + d, + d3; = n. Any given set of d s satisfying these conditions
will give rise to as many different sequences as there are ways of arranging the n
numbers in a line. If the n numbers were all distinct, there would be n!
permutations. Thus, if the n digits are labelled so that digits of the same kind are
distinguishable from one another, there are n! permutations. However, two of
these permutations will be the same when the labels are removed if and only if
they differ only in the arrangement of the d,0 s among themselves, the d;1 s, the
d,2 s, and the d33 s.Thus each permutation of the unlabelled digits corresponds
to dy! dq!d,! d3! permutations of the labelled digits. Thus the number of distinct
sequences with dy0s,d;1s,d,2 s, and d33 s is

n!
doldqi!d,! ds!

Hence the total number of sequences is equal to

n!
Z doldi!d,! ds! (3.15)

where the sum is over all sets of numbers d,, ..., ds such that d, is odd and

dy + dq + d, + d3 = n. On looking for a possible generating function, the
factorials on the denominator lead one to try the exponential function exp(x)

introduced in Example 2.10. So consider

x3  x° x% X3 x?
<x+§+§+---><1 +X+E+§+'“><1+X+E+"'>.O
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The coefficient of x™ is — times the number given by (4.15), as can be seen by
n!

considering the ways in which x™ can be obtained by selecting a term from each

bracket and multiplying them together. But (4.16) is

x3  x° 5 x3  x°
x+§+§+--- {exp(x)}® = x+§+§+--- exp(3x)

1
= = (exp(x) — exp(—x))exp(3)

= %(exp(élx) — exp(2x))

1(4" 2")
2\n! n!

The number of sequences is n! times this number, namely

The coefficient of x™ in this is

S —2m)

2
For another method of solving this example, see Exercises 3, question 4. As far
as the above solution is concerned, the reader should remember not so much the
answer as the idea of making use of the properties of exp(x).
Example 4.8:
Partitions of an integer. Ideas from number theory have the habit of appearing
all over the place and when least expected. One such idea is that of a partition of
an integer. By a partition of a positive integer n is meant the expression of n as

a sum of positive integers. For example, 5 has seven partitions:

5=4+1=3+2=3+1+1=2+2+1
=2+1+1+1=1+1+1+1+1

Note that 5 itself is a partition of 5. Let p(n) denote the number of partitions of
n, so that p(5) = 7, and let f(x) be the generating function,

fO) =pD)x +p@)x? + -+ + p(M)x™ + -
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Consider the expression
1-x)"11-x»)"T1-x3"1.
=Q+x+x>+-)A+x2+x*+-)A+x3+x6+-) ...
What is the coefficient of x™ in this expression? Note that nx s can be obtained
by selecting a power of x from the first bracket, another from the second, and so
on, and multiplying them together. Thus if x‘% is chosen from the i th bracket,
x™ will be obtained if n is the sum of a;1's, a,2 s, and so on. Thus x™ will be
obtained as many times as n has different partitions, so that the coefficient of x™
must be p(n). This proves that the generating function is
fGO=0Q—-x)"11—-x*)"t1—-x3)"1..
Although such a generating function does not yield a formula for p(n) easily, it
turns out to be useful enough to yield properties of partitions. For an example of

this, see the exercises below.

Exercises 3:
1. Let f(x) denote the generating function of the Fibonacci numbers. Show
that the recurrence relation gives
f(x) =x+ 2x% + x(f(x) — x) + x2f (x)
so that (1 — x — x2)f(x) = x + x?
Deduce that

fl) =+ x*){1 - (x+ x5}
=+ x){1+x1+x)+x*(1+x)*+ -}

Read off the coefficient of x™ in this expression, and check that your answer
agrees with Exercises 2, question 4.
2. Suppose that n objects lie in a straight line. Two adjacent objects are chosen
and bracketed together, and thereafter are considered as just one object. This
results in ( n — 1 ) objects in a line. Two of these ( n — 1 ) objects which are
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adjacent are then bracketed together ;mereaﬂer considered as just one object.
This process is continued until only one object is left. Let a,, denote the number
of ways the process can be carried out, starting with n objects, so that a; = 1,
a, =1,a; =2. By observing that in the last bracketing there are
grouped together r original objects and ( n — r ) original objects, for some 7,
show that
A, = Q1Ap_1 +ay0,_,+ -+ a,_1a; (n > 3).
Deduce that the generating function f (x) satisfies
¥ -fx)+x=0,
and hence show that -
(2n — 2)!
a, = m
3. Solve a,, = 6a,,_1 — 9a,,_, subject to the initial conditions a,, = 2, a; =
6 by writing f(x) = Yoo, a,x™ and showing that f(x) = 2(1 — 3x)~ L.
4. Solve Example 4.7(b) as follows. Let a,, be the required number of n-
digit sequences. By considering whether or not a given sequence begins
with a 0 , show that
ne1 = 3ay, + (4™ —ay), ie. apyq = 2a, + 4™

Put f(x) = Yp=1 a,x" and show that

fx) =

(1-2x)(1—-4x)
whence a,, = %(4“ —2™).

5. Let b,, denote the number of ways in which the sum n can be obtained on
rolling a die any number of times. Show that the generating function for the
bi 1S

(1—x—x?—x3—x*—x>—x%"1.
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6. (Harary and Read (1970). Proc. Edinburgh math. Soc.). Certain organic
chemical compounds built up from benzene rings can be represented by

hexagons joined together:

O

Benzene Naphthalene
Anthracene Phenanthracine

This raises the question: how many ways are there of combining together n
hexagons? Simplify the problem as follows. First do not allow three hexagons to
have a vertex in common. This means, for example, that a third hexagon cannot
be nestled under two of the anthracene hexagons. Secondly, suppose that the
configurations are all growing from a fixed spot, so that there is one fixed base
hexagon. Onto this hexagon can be fitted either one hexagon (on any of the sides

a,b,c ) or two hexagons (one on each of a and ¢ ).
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Let h,, denote the total number of possible patterns with n hexagons. Let s, d,
denote respectively the number with one, two hexagons joined to the base
hexagon. Show that
(a) sp +dy = hp(n > 2),
() Sp+1 = 3y,
(¢) dn+1 = hihp—q + hohy 5 + -+ hy 17y,
If h(x), s(x), d(x) are the respective generating functions, deduce that
(d) h(x) = s(x) + d(x) + x,
(e) s(x) = 3xh(x),
(0 d(x) = x{h(x)}*
and that
x{h(x)}* + 3x — 1)h(x) + x = 0.

7. Let q(n) denote the number of partitions of n into distinct parts. Thus
q(5) = 3, since 5 can be writtenas Sor (4 + 1 ) or ( 3 + 2 ). Show that
the generating function Q (x) is

(1+x)A+x3)A+x3HA +x*) -

8. Let r(n) denote the number of partitions of n into odd parts. Thus r(5) =
3since5=3+1+1=1+1+1+1+ 1. Show that the generating
function R(x) is

(1= =%t = x>)7
9. Prove the surprising result that, in the notation of the previous exercises,

q(n) = r(n) for every value of n. Do this, without finding what g(n) or
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T

Q(x) write 1 + x" as and see what happens.)

10.Let f(x) be the generating function for the sequence a4, a,, .... Find the
sequence whose generating function is (1 — x)f (x). The answer should
explain why ( 1 — x ) is called the difference operator.
11.The sequence {a,} is defined by ay, = e, a; = 2e,
nan, = 2(ap-1 + ap—z), (n > 2)
Show that the generating function f satisfies the equation

f'(x) = 2(1 + x)f(x) and deduce that f(x) = exp{(1 + x)?}. Hence

show that
B i 1 (Zn + Zr)
an = (n+nr)!\ 2n /)’
=0

_z 1 (2n+2r+2)
Gan+1 = 0(n+r+1)! 2n +1
r=

12.Let a,, denote the number of ways in which n letters can be selected from
the alphabet {0,1,2} with unlimited repetitions except that the letter 0
must be selected an even number of times. Find a,,. How many n-letter

sequences can be formed from this alphabet containing an even number

of Os ?
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4.4. Miscellaneous methods

The first recurrence relation mentioned in this book was

fmk)=f(n—Lk)+f(n,k—1) (3.17)
subject to the boundary conditions
f(Lk)=1,f(n, 1) =n (3.18)
This has certain similarities to the recurrence relation for binomial coefficients,
n n—1 n—1
(k) B ( k ) * (k = 1) (3.19)

subject to the boundary conditions

M=1()=1

No general method will be given for dealing with relations such as (3.17), but it
will be shown how (3.17) can be solved by exploiting its similarity to the
known relation (3.19). In (3.17) the k terms behave as in (3.19), but the n terms

do not. Diagrammatically, the pattern is

n n—1 n
k k k—1

compared with the binomial coefficient pattern of

n n—1 n—1
k k k—1

How can (3.17) be fitted into the required shape? Suppose the new function g is
defined by
fn, k) =gn+k,k).
Then (3.17) becomes
gn+kk)y=gmn+k—-1L,k)+gn+k—-1,k—-1) (3.20)
subject to the boundary conditions
gl+kk)y=1,gn+11)=n

Now (3.20) is familiar. For, with m = n + k, it is just
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gm k) = gm—1L,k) + gm — Lk — 1)

the recurrence relation for binomial coefficients. The boundary conditions,
however, are not quite right. They would be, though, if the first variable were
reduced by 1. So instead of putting m = n + k, try puttingu =n+ k — 1, and
defining the function h by

f(n,k) =h(n+k—1,k) = h(u, k).
(3.17) now becomes

h(u,k) =h(u—1,k) +h(u—1,k—-1)
subject to
h(k,k) =1,h(n,1) = n.

It therefore follows that h(u, k) must be (Z) so that, finally,

Fk) = (n+l;—1)

Derangements
It has already been shown that if a,, denotes the number of derangements of n
objects, then a,, satisfies the recurrence relation

a,=m—-Da,_1+(n—1a,_, (3.21)
This is not one of the relations covered by Theorem 4.1 since the coefficients of
a,_1 and a,_, are not constants but depend on n. How can (4.21) be solved?
One idea is to make a suitable substitution which will transform (4.21) into
something more tractable. Define a new sequence {b,,} by writing

a, =n'b,
(3.21) then becomes
nb, = (n—1)by_y +byp_p (n > 3)

and the boundary conditions a; = 0,a, = 1, become
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This new relation does not look much better than the original until it is observed

that it can be written as

n(bn - bn—l) = _(bn—l - bn—z)

which, on putting ¢,, = b,, — b,,_1, becomes

1 1
Cn = ncn—p C2 = >
This is easily dealt with, for clearly
="
Cn = iy (n > 2)

So that b,, = ¢, + by,_4

Cp + (Cn—l + bn—Z): =Cp+Cpqt bn—Z

DT
B r!

r=2
Thus

N YT
“"_"Z r! ‘”Z r!

r=2 r=0
1 1 1 1

p=nl{l—s 4=t D] (3.22)

This formula for a,, will be derived by another method when the inclusion-

exclusion principle is introduced in the next chapter.
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Exercises 4:

1.Let a,, denote the number of derangements of n objects. Deduce from (3.21)
that a, =na,, + (— 1)", and hence derive (3.22) by con- a side ring b,, = % Also
verify that a, =9, as = 44, ag = 265, a;, = 1854.

2. As in Exercises 1.1, question 5, let g(n, k) denote the number of ways of
placing k indistinguishable lions in n cages so that no cage contains more than
one lion and no two lions are put in consecutive cages. It has been shown that
g(n,k)=g(n-2,k-1)+g(n-1,k) Define a new function h by g(n, k) =h(p, k) where p
=n — k + 1. Show that the recurrence relation and boundary conditions reduce

to those —k+1 for binomial coefticients, and deduce that g(n, k) = ("_,’;H).
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Unit IV
The Inclusion-Exclusion Principles-Rook Polynomial.

Chapter 4: Sections 4.1 - 4.2

4.1. The Inclusion-Exclusion Principles:

The principle three are in mathematics a handful of principles which look so
simple as to be valueless, but yet in practice are of the utmost importance and
power. One such principle is the box principle which asserts that if (n + 1) lions
are put into 7 cages, then at least one cage must contain more than one lion. A
course in number theory will show how powerful this simple principle is. The
principle which is the subject of the present chapter is not much more difficult to
understand. In-its simplest form it is concerned with the number of elements in

the union of two sets A and B (see Fig. 4.1).

Figure 4.1.

Let |A | denote the number of elements in the set A. In evaluating |A U B|, consider

first the possible answer |A| + [B]. This will in general be the wrong answer since
those elements which are in both A and B are included twice, and therefore must
be removed once.

Thus
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|A U B|=1Al+ [B]-|AN B|
Here the inclusion-exclusion principle is at work. First too many are included, but
thereafter excluded.
Example 4.1:
A={l1,2,3} and B= {2, 3, 4}. |A|=B|=3, |AN B| = 2, so that |]A UB|=3 +3 — 2
=4. This is correct since A UB ={1,2,3,4}
What happens with 3 sets A, B, C (see Fig. 4.2)? In evaluating |A UBUC|, start off
with |A[+|B[+|C|. Any element in both A and B, or in both B and C, or in both C

and A is included more than once. So the next attempt at a solution to consider is

C
Figure 4.2.

Not even this is correct, for if there are any elements in all three sets A, B,C,
then they will have been included thrice and excluded thrice, and so must be
added in once again. Thus
|AUBUC=|A[+B[+|C|-[ANB|- BNC|—|CNA| +|ANBNC| .......... 4.1)

The reader will now be able to deduce from the patterns in (4.1) and (4.2) a

similar expression for | AUBUCUD)|. Indeed,

|AUBUCUD|=|A|+B|+|C+|D|-|JANB|- BNC}—|Cn D| -|]An C| - BN D|
+ANBNC[+ANBNDH+ANCNDHBNCND-ANBNCND |
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All these expressions illustrate the ba51c inclusion-exclusion principle, which is
now presented in a slightly different way. Suppose that a collection of objects is
given, along with a list of r properties which the objects may or may not possess,
and suppose that it is required to find the number of objects which possess at least
one of the properties. In the examples above, the first property was that of
belonging to the set A, the second was that of belonging to B, and so on. Denote
by N(i,, . . ., k) the number of objects which possess each of the ith, jth, ..., kth
properties (and possibly some others as well). Then the number of objects
possessing at least one of the properties is
N(D+N@2)+NQB)+...... +N(r) —{N(1,2)+N(1,3)+N(2,3)+...... +N(r-1,r)}+

{N(1,2,3)+N(1,2,4)+........ +N(r-2,r-1,1) }-

......... +(-1D"IN,2,...7) .....(4.3)

This result is perhaps more useful in its complementary form. Instead of asking
how many objects possess at least one of the properties, it is asked how many
possess none of the properties. Clearly this is obtained by sub- tracting the
expression (4.3) from the total number of objects.
Proof of the principle (4.3). If an object possesses none of the r properties, then
it clearly contributes nothing to (4.3). If an object possesses t > 1 properties, it

must be shown that it contributes 1 to (4.3). But its contribution is
=)+ ()= ()
2 3 4

—1-fier(p)-(5)+

a 2/ \3

=1-(1-1t=1
Example 4.2:
Derangements. The formula (4.22) for a,, the number of derangements of n

symbols, has the inclusion-exclusion look about it. Its appearance suggests that

an alternative derivation is possible, and this is now confirmed. As objects, take
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the n! possible permutations of the n symbols. An object possesses the i th

property if the i th symbol appears in it in the i th place. Then the number of
derangements is just the number of objects possessing none of the properties.
Using the notation of (4.3),
N({)=(n-1)!
since the i th symbol is fixed and the remaining ( n — 1 ) can undergo any
permutation. Similarly,
NG = (n-2),

since two symbols are fixed, leaving n — 2 to be permuted;

N(i,j, k) = (n—3)!
and so on. Further, the number of terms of type N (i) is (7;), of type

N(i,j) is (721), and so on. Thus, the number of permutations which satisfy at least

one of the properties, i.e. which are not derangements, is

(n — 1)! (Z) —(n—2)! (Z) +(n—3)! (Z) —

The number of derangements is n! minus this number, i.e.
m—DIn! (n=2)In! (n—-3)!In!

oDt w2 m=3ya

(1 1 1 1
=nl{l= gyt G

It so happens that it is profitable to consider this problem geometrically. Take an
n X n chessboard (see Fig. 4.3), and represent a permutation of the numbers
1,2, ...,n by placing a chesspiece on the square of the i th row and the j th
column if the number i is permuted to the j th position. For example, the
permutation 2413 is represented by the accompanying diagram (where the top

row is taken as the first row, and the left column as the first column).
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Figure. 4.3

Clearly a permutation corresponds to placing n pieces on an n X n board so that
no two pieces lie in the same row or column. For a derangement, no piece must
lie on the main diagonal (i.e. the diagonal from the top left to the bottom right).
Thus formula (3.22) can be interpreted as giving the number of ways of placing
n rooks on an n X n chessboard, with none on the main diagonal, so that no rook
can take any other rook. For, as is well known, a rook can only move along rows
or columns.

This idea will be returned to later, but meanwhile another interpretation of (3.22)
is given. Suppose that in constructing an n X n Latin square the numbers 1,2, ..., n
have been placed in some order in the first row. Then (3.22) gives the number of
ways of choosing a second row for the square. This raises the question: assuming
that the first ( 7 — 1 ) rows have been chosen, can anything be said about the
number of choices for the r th row? This is clearly closely related to the
enumeration of permutations of 1, ..., n where there are (r — 1) forbidden places

for each number.
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Exercises 5.1

1.

Exam scripts of n students are returned to the class at random, one to each
student. Show that the probability that no student receives his own script
tends to 1/e as n — oo. (Probability = number of ways this can happen
divided by the total number of ways in which the scripts can be returned.)
Each of a class of 50 students reads at least one of mathematics and

physics. 30 read mathematics and 27 read both. How many read physics?

. How many integers from 1 to 1000 are divisible by none of 3,7,11 ?

A survey carried out over a large number of citizens of a certain city
revealed that 90 per cent of all people detest at least one of the pop stars
Hairy, Dirty, and Screamer. 45 per cent detest Hairy, 28 per cent detest
Dirty, and 46 per cent detest Screamer. If 27 per cent detest only
Screamer, and 6 per cent detest all three, how many detest Hairy and

Dirty but not Screamer?

. Present the permutation 35142 by a chessboard diagram.

How many ways are there of placing 5 non-taking rooksona 5 X 5
board? How many ways if none lie on the main diagonal? How many if
exactly one lies on the main diagonal?

How many permutations are there of the digits 1,2, ...,8 in which none of

the patterns 12,34,56,78 appears?
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4.2. Rook polynomials:
It has already been pointed out that the problem of derangements is equivalent to
that of placing non-taking rooks on certain allowable squares of the chessboard.
This suggests that some combinatorial problems may reduce to placing non-
taking rooks on boards of various shapes and sizes.
Let C be an arbitrary board of any shape, with m squares. For each k < m, let
1. (C) denote the number of ways of placing k non-taking rooks on C. Then the
generating function for the numbers 73, (C),

R(x,C) = 1(C) + 7 (O)x + 15(C)x? + - + 17, (C)x™,
is called the rook polynomial of the board C.
Example 4.3:
Find the rook polynomial for an ordinary 4 X 4 board.
Solution:
The numbers 7;(C),i = 0, ...,16 must be evaluated.
Clearly r;(C) = 0 for all i > 4.
79(C) = number of ways of placing no non-taking rooks on C,= 1
(the only way being to leave the board empty).
r1(C) = 16, since there are 16 squares to choose from. Next, r,(C) is the
number of ways of placing two non-taking rooks on C. These rooks must lie in
different rows and columns. The number of ways of choosing two rows in (;)

Once the rows are chosen, a rook can be placed in the first one in any of 4 ways,

and another rook in the second row in any of 3 places.

Thus

4
p(C) = (2> -4 -3 = 72. Similarly

r3(C)=(4>-4-3-2=96,r4(C)=(:)-4-3-2-1=24.

3
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Thus
R(x,C) =1+ 16x + 72x* + 96x3 + 24x*

The  reader should now try  Exercises 4.2, question 1.
Faced with a more awkwardly shaped board, the problem of finding the rook
polynomial would prove to be near impossible if it were not that some tricks exist
whereby a board can be reduced to a simpler one. One such trick is concerned
with boards which fall into two or more noninterfering parts. Two parts A, B of a
chessboard C are non-interfering if no square in A is in the same row or column

of C as any square of B. The board in Fig. 4.4 falls into 3 non-interfering parts.

Figure. 4.4
Property 1:
If a chessboard C consists of two non-interfering parts, then the rook polynomial
for C is just the product of the rook polynomials for the parts A and B.
Proof:
When k non-taking rooks are placed on C, t will be placed on A and (kK —t ) on
B, for some t,0 < t < k. Since the 7 (A) possible placings of t rooks on A can
each occur along with any of the r;,_(B) placings on B (for A and B do not
interfere with one another), it follows that

1 (C) = 19(A)1(B) + 11 (A)71%-1(B) + -+ + 13 (A)710(B).
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But the expression on the right is simply the coefficient of x* in

{ro(4) + ri(A)x + r,(A)x? + - Hro(B) + r(B)x + r,(B)x? + -+ },
1.e. in the product of the rook polynomials for A and B.
Example 4.4:
Suppose that C consists of n non-interfering 2 X 2 blocks (Fig. 4.5).

B

> n blocks

Figure. 4.5

The rook polynomial for one block is 1 + 4x + 2x2. The rook polynomial for C
is therefore (1 + 4x + 2x2)™.
Property 1, although useful, is not widely applicable. The problem still remains
of how to deal with a board which does not fall into noninterfering parts. The
next property is of use here.
Property 2:
Given a chessboard C, choose any square of C and let D denote the board
obtained by deleting from C every square in the same row or column as the
chosen square (including the chosen square itself).
Let E denote the board obtained from C by deleting only the chosen square.
Then

R(x,C) = xR(x,D) + R(x,E).

Proof:
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If k > 1 non-taking rooks are placed on C, then the chosen square either is or is
not used. If it is used, then ( k — 1 ) rooks are left to be placed on D, and this
can be done in 1,_; (D) ways. If it is not used, then k rooks have to be placed on

E, and this can be done in 13 (E) ways. Thus

1.(C) = 1e_1(D) + 1 (E),

so that
R(x,C) = Z 7. (C)x*
k=0
= 2 T (D)x® + z 1 (E)x®
k=1 k=0

= xR(x,D) + R(x,E)
By repeated applications of Property 2, the rook polynomial of any board can be
found.
Example 4.5:
Find the rook polynomial of the board of Fig. 4.6.

Figure. 4.6
Solution:

Choosing the centre square,
R(x,C) = xR(x,D) + R(x,E), ... .....(4.4)

where
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D =@7 and E =@@=

Now,
R(x,D) =1+ 2x (4.5)
and, by Property 1,
R(x,E) = R(x,H)R(x,K)
where
H =QA@ and K =0

Since R(x,H) = 1 + 4x + 2x% and R(x,K) = 1 + x, it follows that

R(x,E) = (1+x)(1 + 4x + 2x?) (4.6)
From (4.4)-(.6) it now follows that

R(x,0)=x(1+2x) + (1 + x)(1 + 4x + 2x2)
=1+ 6x + 8x% + 2x3

This whole argument can be written more clearly in the following symbolic
way:

R(x,C) = xR(BE) + R(BE)
= x(1 + 2x) + R(BB)R(D)
=x(1+2x)+ (1 +4x + 2x*)(1 + x)

This abbreviated notation is used in the next example.

Example 5.6. R(2E) = xR (@A) + R(AM)

=x(1+x)+xR()+R()

= x(1+x) +x(1 + 2x) + R ()R()

=x(2+3x)+ (1 +3x+x)(1 +x)
1+ 6x+7x%+x3
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Applications of rook polynomials

Example 5.7:

The manager of a firm has 5 employees to be assigned to 5 different jobs. The
men are A4, B, C, D, E and the jobs are a, b, ¢, d, e. He considers that A is unsuited
for jobs b and c, B unsuited for a and c, C unsuited for b, d and e, D suited for all
and E unsuited for d. In how many ways can he assign the jobs to men suited to
them?

Solution:

The board shown in Fig. 5.7 represents the situation. The problem is to find the
coefficient of x> in the rook polynomial for this board. At this point the reader
will probably hold back at the mere thought of finding the rook polynomial, due

to the amount of work

A

m U 0O W

a b c d '3
Figure. 4.7
involved. In fact, it would be much easier to find the rook polynomial for the
board consisting of the forbidden positions. This polynomial will now be found

before its usefulness to the original problem is explained.
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L] ]
Ry T O =xR| _J'“"Rrp

L] []

= X{xR(B) + R(B)} + R(B)R(B

= x{x(1+x)+ 1+ 3x+ 2x?} + (1 + x){xR(BA)
+R(BD)}

= x(1+4x +3x2) + (1 +x){x(1 +3x +x2) +
+(1 + x)R(BE)}

= (x+4x2+3x3) + 1+ x){x +3x? +x3 +
+(1 +x)(1 + 4x + 3x2)}

=1+ 8x + 20x? + 17x3 + 4x*.(4.7)

This is the rook polynomial for the board consisting of the forbidden squares.
Now the assignment of jobs to men can be considered as permutations of the
numbers 1, ...,5. For example, if A gets job ¢, B gets

d,C gets b, D gets a, and E gets e, the assignment corresponds to the
permutation 34215, since, for example, the first man gets the third job and the
fourth man gets the first job. The key to the problem now lies in the following
theorem.

Theorem 4.1:

The number of permutations of n symbols in which no symbol is in a forbidden

position is
n
PRGN CESIE
k=0

where 13, is the number of ways of placing k non-taking rooks on the board of

forbidden positions.
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Solution to Example 4.7 (continued). Aésuming for the moment that the

theorem has been proved, and noting that, from (4.7),
o =11 =81, =20,13 =17,1, = 4,
and n = 5, the number of ways of assigning the jobs to the men is
5!—418+3120—-2!17+4 =18
Thus,
a knowledge of the rook polynomial for the board of forbidden squares leads
very quickly to information about the permitted squares.
Proof of Theorem 5.1. In the notation of the inclusion-exclusion principle,
suppose that a permutation possesses the i th property if the i th symbol is in a
forbidden position. Then the number of permutations with no symbol in a
forbidden position is
n—{N1)+---+Nn)}+{N@Q2)+ - }—"
Now each N (i) is equal to s;(n — 1) ! where s; is the number of forbidden
squares in the i th row, since the i th symbol can be placed on any of these s;
squares and the remaining symbols can be placed in (n — 1) ! ways. Since s; +
-+ 5, =1y, it follows that
N+ +Nn)=n—-D!(s;++s)=Mn—D!n.
Similarly,
N1,2)+N1,3))+-+Nn—-1,n)=mn-2)r,
and so on.
Example 4.8:
In constructing a 6 X 6 Latin square, the first two rows have been chosen as

follows:

68

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



1 2 3 4 5 6

2 4 1 3 6 5

By Hall's theorem (2.3) it 1s definitely possible to find a suitable third row. But
how many possibilities are there?

Solution:

The problem is: how many permutations of 1, ...,6 are there with no symbol in a
forbidden position, the forbidden positions being represented by crosses in the

diagram (Fig. 4.8)?

Figure. 4.8
Following the method of the previous example, the first thing to do is to obtain
the rook polynomial for the board of forbidden positions. This is

R(EMR(A) = (2x* + 16x3 + 20x% + 8x + 1)(1 + 4x + 2x?%)
=(4x% + 40x5 + 106x* + 112x3 + 54x2 + 12x + 1)

In the notation of Theorem 4.1, vy = 4,15 = 40,1, = 106,153 = 112, 1, =
54,r; = 12, and ry = 1, so that the number of possibilities for the third row of
the square is

6! —12.5! + 54.4! — 112.3! + 106.2! — 40 + 4 = 70.
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Exercises 5.2

1. Find the rook polynomial for an ordinary 8 X 8 chessboard.

2. Asix-a-side football team is to consist bf the players 1? A,B,....F. A
refuses to play in positions 1 or 2, B in position 4, C in positions 1 or 5, D
in2,—in4, and F in 4 or 6. How many ways are there of assigning
agreeable positions to the six players?

3. The first two rows of a 5 x 5 Latin square are 1, 2, 3,4, 5 and 2, 3, 4,5, 1.
In how many ways can a third row be chosen?

4. Find the rook polynomials for the following boards:

(a) (b)

5. A computer matching service has five male subscribers A, B,C, D, E and
four female subscribers a, b, c,d. After analysing their interests and
personalities, the computer decides that a is unsuitable for B and C, 6
unsuitable for C, ¢ forA and £, d for B. In how many ways can the female
subscribers be matched?

6. By trial and error, verify that there are four possible third rows for a Latin
square whose first two rows are 1, 2, 3, 4 and 2, 1, 4, 3, whereas there are
only two possibilities if the first two rows are 1, 2, 3, 4 and 2, 4, 1, 3.
Thus, although the number of choices for the next row is always => 1, the
actual number of choices depends on the choice of the previous rows.

7. In the light of question 8, repeat question 4 if the second row is

2,3,1,5,4.
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Unit V
Block designs - square block designs.

Chapter 5: Sections 5.1, 5.2

6.1. Block designs

The origins of the theory of block designs can be traced back to the problem of
designing certain types of statistical experiment. It is therefore not insignificant
that the name of the distinguished statistician Fisher is attached to one of the first
results in the subject (Theorem 5

.2). The idea behind a block design can be seen in the following type of problem.
Suppose that a number of brands of instant coffee are to be tested among a number
of housewives, the object of the experiment being to let the ladies compare the
different brands and decide on their relative merits. To make the tests as fair as
possible, it is decided that the following conditions should be satisfied: (1) each
housewife should taste the same number of brands; (2) each pair of brands should
be compared by the same number of housewives. % Clearly, one way of achieving
this would be to give every housewife every brand of coffee, but this is wasteful
and time consuming. The problem is to achieve the aim more economically.
Mathematically, all that is involved is a set S of varieties (the brands of coffee),
and a collection of subsets of S (each subset consisting of those varieties which a
particular housewife tastes) called blocks, with the properties: (a) each block has
the same number of elements; (b) every pair of varieties is contained in the same
number of blocks.

Definition 5.1.

A block design is a family of b subsets of a set S of v elements such that, for some

fixed k and A, with k <0, (1) each subset has k elements, (2) each pair of elements
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of S occur together in exactly \ subsets. The elements of S are called the varieties,

and the subsets of S are called the blocks.

Example 6.1. Take S = {1, 2, ..., 7}, and consider the following seven subsets of
S: {1,2,4}, {2,3,5}, {3.4,6}, {4,5,7}, {5,6,1}, {6,7,2}, {7,1,3} .Here b=7,v=7 k=3,
A = 1.To see that A = 1, consider any pair of elements, say 4 and 6, and verify
that exactly one of the seven subsets contains both 4 and 6. Do this for each pair.

This design could be used to compare 7 brands of coffee, using seven
housewives. Each housewife is given 3 brands, and any particular pair of brands
will be compared by exactly one housewife.

There is a simple geometrical representation of the above design. The
elements 1, ...,7 are represented by points, and the blocks are represented by lines
(all but one being a straight line). This is the simplest example of a finite
projective plane, where the elements are usually called points and the blocks are
called lines. This one 1is known as the seven-point plane

(Fig 5.1). It is the simplest example of a Steiner triple system;

Figure. 5.1. The seven-point plane.
But there is another useful way of representing the design of Example 5.1. The
first set {1,2,4} can be represented by the following string of Os and 1 s:
1101000.
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There is a 1 in the first, second, and f;)urth" places because the set consists of the

first, second, and fourth elements. Similarly, {2,3,5} can be represented by
0110100.

Representing each set in this way, and listing the strings one under the other, the

following matrix, called the incidence matrix of the design, is formed

1 1 0 1 0 0 O
0 1.1 01 0O
0 011 010
0 001 1 01
1 0 0 0 1.1 0
0 1.0 0 0 1 1
1 01 0 0 0 1

Each row represents a subset or block, and each column gives information about
a particular element or variety. For example, by looking at the third column it is
deduced that the element 3 occurs in the second, third, and seventh sets. The
condition that any pair of elements occur together in exactly one block is
represented by the property that any two columns both have 1s in the same row
exactly once. For example, the first and seventh columns both have a 1 in the
seventh row; this means that the elements 1 and 7 occur together only in the
seventh set.

The advantage of using incidence matrices to describe a block design instead of
listing the sets element by element is that the structure of the design is seen more
clearly without any irrelevant information such as the names of the elements
confusing the issue. It is also easier to scan the columns to find how many sets
contain a given element than to look through a list of sets. Note also that the
number of rows is b, and the number of columns is v.

The conditions for a block design imply a further condition, namely that each

variety must occur in the same number of blocks. The proof of this acts as an
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introduction to simple but important éouniing ideas @ which will be much used
in the next chapter.
Theorem 5.1:
In a block design each element lies in exactly r blocks, where

r(k—1)=A(v —1) and bk = vr. (5.1)
Proof:
Concentrate on any one of the elements, and suppose that it occurs in r blocks,
for some r. Each of these r blocks contain ( k — 1 ) other elements, so that the
number of pairs including this chosen element is r(k — 1). But there are
( v—1) elements with which it can be paired, and each pair occurs A times.
Hence r(k — 1) = A(v — 1). Since k, v, and A are fixed, it follows that » must be
the same for each element. For this fixed value of r, each element therefore has
r appearances in the blocks, so that there are vr appearances of elements
altogether. But there are b blocks each with k elements, so the number of
appearances must also be bk. Thus bk = rv.
The five parameters b, v, 1, k, A of a block design are therefore not independent,
but have two restrictions as stated in the theorem. Often a block design is referred
toasa(b,v,r1,k,A)-configuration;
for example, the seven-point plane is a (7,7,3,3,1)-configuration. Whatever
b,v,r, k, A are, they must satisfy (5.1), but conversely, if five numbers b, v, 7, k, A
satisfy (5.1), there is no guarantee that a ( b,v,r,k,A )-configuration
exists. For example, it is known that a finite projective plane with b = v =
43,r =k =7, and A = 1 does not exist (see Theorem 5.4).
The seven-point plane has a further property which is not possessed by all block
designs, namely that b = v. This means that the number of blocks is the same as

the number of elements, so that the incidence matrix is a square matrix. Such
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designs are called square or symmetric ;leéigns although the second description
is misleading since the incidence matrix need not be symmetric about the main
diagonal. The reason for the name will appear later. Since b = v implies r = k,
square designs are completely determined by the three parameters v, k, A and
hence are often called ( v, k, A )-configurations. The seven-point plane is a (
7,3,1 )-configuration. Condition (6.1) becomes

k(k—1)=Av—-1) (5.2)
Equality of b and v is in a sense the extreme case since b can never be smaller
than v in a block design. This is Fisher's result, proved in 1940.
Theorem 5.2 (Fisher). For a(b, v, 1, k, 1)-configuration,

b>v.

Proof:
Let A be the incidence matrix, so that A has b rows and v columns. The key idea
in the proof is to determine the matrix C = A'A. Here A’ is the transposed matrix
of A, obtained by writing the rows of A as columns, and the columns as rows. The

element a; j in the i th row and j th column of A" is equal to aj;, the element in

the j th row and the i th column of A. Then C = (cij)

vxv’

where

h
= z ahiahj.
h
In particular,
— 2 _
Cii = Z Api = z Api
h h
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th element is 1n the h th set, and 1s 0 otherwise. Thus

Cij = z ap; = number of sets containing the i th element

h
=T.

Also, if i # j,

Cij = z QAniQpj-

h

Now ap;ap; is equal to 1 if and only if ap; = apj = 1, i.e. only if the h th set
contains both the i th and the j th elements. There are A such h s. Thus ¢;; = 4,
and
A A
Ao A
IR B
If I is used to denote the unit matrix with 1 s down the main diagonal and O s
elsewhere, and | denotes the matrix with every entry equal to 1, this result can
be written as
AA=r—-DI+ 1. (5.3)
Exercise for the reader. If ] is v X v, then J? = vJ.
To prove that b > v, note first that, if p(C) denotes the rank of the matrix C,
p(C) =p(A’A) < p(4) < Db. (5.4)
Use is being made here of the facts that p(XY) < p(Y) for all matrices X, Y, and

the rank of a matrix is no greater than the number of its rows or columns.

However,
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1 A A A
1 A—1r r—=21 0 0
det =det{A—7r 0 r—A 0

A A A T lA:—r 0 o . r_al

on substracting the first row from each of the others, and this, in turn, on adding

to the first column all the other columns, is equal to

r+iAlv—1) A A A
0 r—A 0 0
det 0 0 r—A .. 0
l 0 0 0 .. T — /1J
=r+(w-DA}- T -1v1
=rk(r—2)v1

# 0, since (5.1) implies that r > A
Thus C is a nonsingular v X v matrix, and so p(C) = v. Thus (6.4) gives b > v

as required.

Exercises 1:

1.The following 12 sets forma ( b, v, 1, k, A )-configuration.

1,23} {456} {789} {147}
2,58} {369} {159} {267}
(3,48} {168} {249} {357}

Write down the incidence matrix and check that b = 12, v =9,r =4,k =

3,4 = 1. Verify that bk = rv and r(k — 1) = A(v — 1). Explain how this
design could be used to test 9 detergents with the help of 12 housewives, or with
the help of 3 housewives on 4 consecutive days.

2. Find A’A and AA’ for the seven-point plane.

3. Show that there exists no (12,8,3,2,1)-configuration.

4. Define the complement of a design D to be the design obtained by changing 0

to 1 and 1 to 0 throughout the incidence matrix of D. If D isa ( b,v,7,k, 1 )-
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configuration, show that its complemenf isa(b,v,b—r,v—k,b—2r+1)-

configuration.

5. Derive from question 1 above a ( 12,9,8,6,5 )-configuration.

6. Show that no block design exists with (a) v =16,k = 6,41 =1,(b)v =
21,k =6,A=1,(c)v =25k = 10,1 = 3, although in each case (6.1) is
satisfied.

7. Show that there is essentially only one ( 7,7,3,3,1 ) design, as follows.
Assume that the elements are 1,2, ...,7; by relabelling if necessary assume that
{1,2,4},{2,3,5) and {1,5,6} are blocks: show that the remaining blocks are
uniquely determined.

8. One of the first block designs to appear explicitly in the statistical literature
was the following, due to Yates [29] in 1936.

{a,b,c},{a,b,d},{a,c,e},{a,d, f},{a e f}{b c [}
{b,d,e},{b,e, f},{c,d,e}{cd [}

Verify that this 1s a (10,6,5,3,2) design. It could be used in an agricultural
experiment where a research lab has 10 blocks each with 3 plots, and where there
are 6 varieties of wheat, 3 in each block, arranged so that any two varieties can
be compared twice due to their occurring twice in the same block.
9. One of the problems which stimulated interest in block designs in the
nineteenth century was Kirkman's schoolgirls problem. The problem was to
arrange 15 schoolgirls in 5 groups of 3 on each of the 7 days of a week in such a
way that during the week each pair of girls would walk together exactly once.
What was wanted was a (35, 15, 7, 3, 1) design which is resolvable, i.e. such that
the blocks can be grouped into r = 7 groups of 5 blocks so that each element
occurs precisely once in each group. Let the 15 girls be labelled

X, o, X7, Y, ..., Yo, Z. Verify that the following is a solution to the problem; it has

78

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



the nice property that the triples for e:‘ai.é}lﬂmday can be obtained from those of the
previous day by replacing X; by X;,1,Y; by Y;,1(i <6),X; by X;,Y; by V;.
Dayl:X,1Y1Z X, XY, X3X, Y7 X5 XY Vo Y3Y5

Day 2: X,Y,Z X3 X,Ye X, Xs Yy X X1 Yy VoY, Y,

Day 7: X,Y,Z X1 XsYs X, X3Ys X, XsYs V1 VoY,

5.2. Square block designs:

In the special case of a square design, (6.3) becomes

k4 4 . 2
AA=(k-DI+y=|* Kk 4 - A4 (5.5)
A4 A .k

As has been pointed out already, the incidence matrix A ofa (v, k, 1)
configuration need not itself be symmetric. The reason for calling a square
block design symmetric is that there is the following symmetry in the properties
of the rows and columns of the incidence matrix:
(1) Any row contains k 1s.
(2) Any column contains k 1s.
(3) Any pair of columns both have 1 s in exactly A rows.
(4) Any pair of rows both have 1 s in exactly A columns.
Property (4) has not yet been proved, but it will be shown to follow from (1), (2)
and (3). Note that property (4) says: in a symmetric (v, k, 1) configuration each
pair of blocks interesect in exactly A elements.
Properties (2) and (3) are contained in (in fact are equivalent to) the statement
(6.5), whereas (1) and (4) can together be expressed as

AA"' = (k- DI+ A] (5.6)
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It will be shown that (2) and (3) togetﬂgr "i}nply (1) and (4), and, conversely, (1)

and (4) together will imply (2) and (3). Once this has been established, it will
follow that A is the incidence matrix of a ( v, k, A )-configuration if A satisfies
either (5.5) or (5.6).

Theorem 5.3:

If A is a square (0,1) matrix (i.e. a matrix all of whose entries are 0 or 1) and if
A satisfies (5.5) with k > A, then (5.6) also holds.

Proof:

Since the diagonal elements of A'A are all k, each column of A contains exactly

k 1s. Thus

JA =k
and, on transposing,
A'] =k]
Now
A A A A
O ) R
A A
=AA+j(;)(k/—k/> -2y
=A'A—-A]
=(k—-—MNDI+A —-A
=(k—=MDI.......... (5.7

Now if two square matrices M, N are such that MN = al for some a # 0, it
1 :
follows that EM and N are inverses of one another and hence commute. Thus

NM = al. It now follows from (6.7) that
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AA" + (%>UA’—A)—£2— k— )1
- J v]—( )

1.€.

AA' = (k= D) = 2] = j(%) (4] — A"

Denote the left-hand side by H, and the right-hand side by K, and note that the
matrix H is symmetric ( H' = H ) whereas K is skew symmetric ( K' = —K ).
Since H = K, it follows that H = H' = K' = —K = —H, so that H = 0. Thus
finally

AA'— (k—DI-A =0
1.e.

AA"' = (k—DI+ A

as required.
This proof is due to I. S. Murphy [22].
Example 5.2:
A finite projective plane of order n is defined to be a (v, k, 1)-configuration for
whichv=n’4+n+1,k=n+1,and 1 = 1, for some positive integer n > 2.
The seven-point plane corresponds to n = 2. In a plane of order n there are
therefore (n? + n + 1) points and ( n? + n + 1) lines, and the four properties
listed on p. 83 become as follows.
(1) Any line contains ( n + 1) points.
(2) Any point lies on (n + 1) lines.
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(3) Any pair of points are joined oy exéétiy one line.

(4) Any pair of lines intersect in exactly one point.
These four properties can be checked for n = 2 by studying Fig. 5.1. The next
plane, corresponding to n = 3, is a thirteen-point plane with 4 points on each
line and 4 lines through each point. See the Exercises 5.4 for its construction.
The major unsolved problem for finite projective planes is to find all those
values of n for which a plane of order n exists. The following statements sum
up the state of present knowledge.
(a) A plane of order n definitely exists if n > 2 is a prime or a power of a prime.
(b) No plane of any other order is known to exist.
(c) There is definitely no plane of order 6 , or in general of any order n, where n
is of the form ( 4k + 1) or (4k + 2 ), and is divisible an odd number of times
by a prime of the form ( 4h + 3).
The smallest values of n which are excluded by (c) are n = 6,14,22. The
smallest number not covered by (a) and (c) is 10, and it is still not known
whether or not a plane of order 10 exists:
Unsolved problem: Is it possible to construct a square (0,1)-matrix A with 111
rows and 111 columns, each row and column containing exactly eleven 1s, such
that

AA" =101 +].
The statement (c) above is due to two North American mathematicians Bruck and
Ryser. Their proof is a delightful example of the ingenuity and cunning which
abound in this branch of mathematics. The proof is accessible to anyone who has

done a little matrix algebra, and is now presented in the simplest case of n = 6.
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Theorem 5.4.
There is no finite projective plane of order 6. It will be convenient to note a few
preliminary results before embarking on the proof of the theorem. In what

follows, I, will denote the n X n unit matrix.

Lemma 1. If H is the 4 X 4 matrix defined by

2 1 1 0
1 -2 0 -1
1 0 -2 1
0 1 -1 -2

H =

then HH' = 61,.

Lemma 2.

There are no integers a, b, ¢ such that a’? + b? = 6c?,

apart froma =b =c = 0.

Proof of Lemma 2.

Suppose such integers do exist. If a, b, c have a common factor it can be divided
out, so it can be assumed that no positive integer > 1 divides each of a, b, c. Now
6¢? is divisible by 3, so a® + b? must also be divisible by 3. The reader should
be able to check that a sum a® + b? can only be divisible by 3 if both a and b are
divisible by 3. But then a? and b?, and hence a® + b?, are divisible by 9. This
implies that 6¢2? must be divisible by 9, i.e. 2¢? is divisible by 3. Thus 3 divides
c? and nence also divides c. But to have a, b, c all divisible by 3 is a contradiction.
Proof of Theorem 5.4. Suppose there is a plane of order 6. Its incidence matrix

A will have 43 rows and columns, and will satisfy

7 1 1 . 1
av=|t 7 1 1
1 1 1 . 7

Thus, if
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B = ’
0
0 0 0 1 44%x44
then
7 1 1 0
1 7 1 0
BI,,B' =|: ORI (5.8)
ll 1 7 OJ
0 O 0 1
Also; if H 1s as in Lemma 1, and if
H
H 0
K = o
H 144544
then
KI44K’ = 6]4_4. (69)

Now the quadratic form associated with the matrix on the right of (6.8) is

7(x? + -+ x23) + x4 +Z XiX;
i#j
1<i,j <43
= (g + -+ x43)% + xGy + 6(xf + - + x53)

and the quadratic form associated with the matrix on the right of (5.9) is
6(x2 + -+ x2,) By (5.8) and (5.9), these forms are both transformed into the
form associated with the matrix l44 by a non-singular linear change of variable.

Combining these changes together, a non-singular change of variable

X1 V1
|l = P
X44 2
Must exist such that
6(y2+ 4+ VE) = (g 4+ x43)2 + 22, + 602+ 4+ xZ) .. (5.10)
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the matrix P being non-singular and with rational numbers as its entries. In

particular, there are rational p; ; ... .... p; 44 such that

X1 =P1aY1t e PraaVageeennnnn (5.11)

Ifp1q # 1, put x; = y1.If py 1= 1, put x; = —yy,. In either case, x{ = y{ and,
by (5.11), withx,, replaced by y; , y; now depends on y,,---, y,,. In the relation

for x, corresponding to (5.11), y; can there- fore be replaced to give

X2 = q2Y2 + 0 . QaaYaa,

with each g; rational. Now set g, =% y, as before. This induces a dependence
relation expressing y in terms of y3, . . ., y44. Continue this process to reach
eventually

X43 = "T43Va3 T Ta4Yas

Now put x43 = Y43 t0 get Y43 = £gVasq

for some rational number g. So far, the y; have been unspecified. Choose y,4 to
be any non-zero rational. Then y,3, . . ., y; are all uniquely specified, as are all
the xx;;. Moreover, xl2 =in for eachi=1,..., 43, so (6.10) becomes

6Yis = Via + (X2 + . X44)?

Thus, there is a rational solution of 6¢? =a? + b?. On multiplying through- out by
the square of the denominator, a contradiction to Lemma 2 is obtained. Using
ideas similar to those of the above proof, it is possible to obtain a much more
general result which rules out the existence of some potential symmetric (v, k, 4)
configurations where A(v— 1) =k (k — 1) holds.

Example 5.3:

(a) There is no symmetric (46, 10, 2) design since 10 — 2= 8 is not a square.

(b) There is no symmetric (29, 8, 2) design since the equation z*> = 6x> + 2y? has

no non-trivial integer solution. (Imitate the proof of Lemma 2: z must be even, so
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z = 2w, so 2w? = 3x*> + y?, so y? +w? must be divisible by 3; so y and w are

themselves divisible by 3, and hence so is x.)
The special case A = 1, k =n+1, v =n? +n +1 has v odd, and the equation which

has to have a nontrivial solution is z> =nx? (= 1) n(n+1)/2 y. If n is of the form
2.

>

4m+1 or 4m + 2 then n(n + 1)/2 is odd and so the equation becomes y? + z> = nx
standard number theory shows that this requires n to be of the form described
earlier. If n is of the form 4m or 4m + 3, then %2 n(n + 1) is even and the equation
becomes z? — y? = nx?, this does have non-trivial solutions: (x, y, z)= (1, 2m + 1,

2m+2) if n=4m + 3,(X, y, z)=(1,m— 1,m+1)if n=4m.
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